
Hidden in Plain Sight: Automatically Identifying
Security Requirements from Natural Language

Artifacts
Maria Riaz, Jason King, John Slankas, and Laurie Williams

Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA

[mriaz, jtking, john.slankas, laurie_williams]@ncsu.edu

Abstract—Natural language artifacts, such as requirements
specifications, often explicitly state the security requirements for
software systems. However, these artifacts may also imply
additional security requirements that developers may overlook
but should consider to strengthen the overall security of the
system. The goal of this research is to aid requirements engineers
in producing a more comprehensive and classified set of security
requirements by (1) automatically identifying security-relevant
sentences in natural language requirements artifacts, and (2)
providing context-specific security requirements templates to help
translate the security-relevant sentences into functional security
requirements. Using machine learning techniques, we have
developed a tool-assisted process that takes as input a set of
natural language artifacts. Our process automatically identifies
security-relevant sentences in the artifacts and classifies them
according to the security objectives, either explicitly stated or
implied by the sentences. We classified 10,963 sentences in six
different documents from healthcare domain and extracted
corresponding security objectives. Our manual analysis showed
that 46% of the sentences were security-relevant. Of these, 28%
explicitly mention security while 72% of the sentences are
functional requirements with security implications. Using our
tool, we correctly predict and classify 82% of the security
objectives for all the sentences (precision). We identify 79% of all
security objectives implied by the sentences within the documents
(recall). Based on our analysis, we develop context-specific
templates that can be instantiated into a set of functional security
requirements by filling in key information from security-relevant
sentences.

Index Terms— Security, requirements, objectives, templates,
access control, auditing, text classification, constraints, natural
language parsing.

I. INTRODUCTION
Security requirements provide a foundation for building

secure software systems. Despite the availability of methods
and processes for security requirements engineering [1], teams
often do not focus on security during early stages of software
development [2]. Existing approaches outline the various steps
involved in identifying security requirements, but leave the task
of executing these steps for the requirements engineer, who
may not be an expert in security. Many security requirements
are functional in nature and need to be incorporated into system
design to ensure data and system security. Natural language
requirements artifacts, such as requirements documents, often

explicitly state the security requirements for software systems.
However, additional sentences in these documents may have
security implications [3] leading to additional security
requirements.

Our research on identifying applicable security
requirements for software systems is guided by the following
primary motivations: Software systems that share security
objectives, such as confidentiality or integrity, also have similar
sets of security requirements [4]. These security requirements,
if specified at the right level of abstraction, can be reusable
across multiple systems, even as a set to meet the same security
objective [5, 6]. Patterns and similarities in grammar or
phrasing of security requirements may exist and allow the
security requirements to be reused across multiple software
systems with minor tweaks to content, such as different actions
taken or different resources being acted upon. By first
identifying both the explicit and implied security objectives of
a software system, we intend to discover an abstract set of
security requirements that may be considered when developing
any software system that shares similar security objectives.
Natural language requirements artifacts often contain security-
relevant sentences that are indicative of the security objectives
and security requirements of the system [3].

The goal of this research is to aid requirements engineers
in producing a more comprehensive and classified set of
security requirements by (1) automatically identifying security-
relevant sentences in natural language requirements artifacts,
and (2) providing context-specific security requirements
templates to help translate the security-relevant sentences into
functional security requirements.

We present a tool-assisted process, Security Discoverer
(SD), that incorporates machine learning techniques to identify
a set of security requirements for an input set of natural
language requirements artifacts. We classify the sentences in
the input in terms of their security objectives (such as,
confidentiality, integrity, availability). This classification can
be used to guide the analyst in creating an appropriate set of
security requirements and in organizing the resultant set of
security requirements. Using this approach, we have classified
10,963 sentences in six natural language artifacts from the
electronic healthcare domain in terms of their corresponding

978-1-4799-3033-3/14 c© 2014 IEEE RE 2014, Karlskrona, Sweden

Accepted for publication by IEEE. c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

183

security objectives. By observing similarities and abstracting
common elements in the classified set of security-relevant
sentences, we empirically derive a set of context-specific
security requirements templates. Our tool suggests applicable
templates for instantiation by the requirements engineers to
generate the security requirements.

For example, consider the sentence "The system shall
provide a means to edit discharge instructions for a particular
patient."1

• "The system shall enforce access privileges that enable
authorized users to edit discharge instructions for a
particular patient." (confidentiality)

 This sentence does not explicitly state a security
requirement but implies security requirements for
confidentiality (of patient's discharge instructions), integrity
(when editing) and accountability (who performed the edits).
Security requirements that can be generated by instantiating
corresponding templates include:

• "The system shall log every time discharge instructions for
a particular patient are edited." (accountability)

We use the following research questions to guide us in
meeting our research goal:

RQ1: What are the core categories of security objectives in
existing literature that should be considered during the
security requirements engineering process?
RQ2: How often are security objectives explicitly stated or
implied in natural language requirements artifacts?
RQ3: How effectively can security objectives be identified
and extracted from natural language project documents?
RQ4: What similarities (words, phrases, grammatical
structure, etc.) exist among security-relevant sentences for
each security objective?
RQ5: What common templates for specifying functional
security requirements can be empirically derived from the
security-relevant sentences?

Our research contributes the following:
• A set of core categories of security objectives that

requirements engineers should consider during the
requirements engineering process.

• A tool-assisted process to aid requirements engineers in
identifying and classifying security relevant-sentences in
terms of security objectives.

• A set of context-specific security requirements templates to
help requirements engineers translate classified security-
relevant sentences into functional security requirements that
meet specific objectives.

The rest of this paper is organized as follows: Section II
reviews the background and related work. Section III presents
the security objectives to address RQ1 followed by our
proposed tool-assisted process, Security Discoverer, in Section
IV. In Section V, we describe our research methodology.
Section VI presents results and evaluation to address RQ2-
RQ4. We present the set of context-specific templates based on
our analysis in Section VII to address RQ5. Section VIII

1 http://www.hl7.org/

discusses threats to validity for our study. Finally, Section IX
concludes the paper in addition to outlining future directions.

II. BACKGROUND AND RELATED WORK
In this section, we discuss the background of security

objectives, and related work in requirement classifications and
security requirements engineering.

A. Security Objectives and Requirements
Security objectives are the security goals or desired

security properties of a system [7]. Security requirements are
functional and non-functional requirements that operationalize
security objectives without specifying how to achieve those
objectives. Functional security requirements describe the
desired security behavior of a system [8] and, if incorporated,
can achieve the corresponding security objectives. For this
paper, we use the term security requirements to mean
functional security requirements.

Firesmith [9] argues security requirements can be reusable
across multiple systems and has proposed the use of
parameterized templates to model reusable security
requirements. Mellado et al., [6] argue the effectiveness of
reusing related security requirements that act as a group to
meet security objectives. In our work, we group security-
relevant sentences in terms of security objectives and provide
context-specific templates to meet these objectives, building
on the observations from previous work.

B. Identifying Security Requirements
Security Requirements Engineering (SRE) has gained

focus in recent years with emphasis on identifying security
requirements early on in the software development lifecycle.
Mellado et al. have conducted a systematic review of SRE
approaches [10] to summarize existing methodologies. Fabian
et al. also provide a comparison of SRE methods [1]. These
methods include lifecycle-based approaches such as Microsoft
SDL [11] as well as methods that solely focus on SRE, such as
the SQUARE method [12], which provides a framework for
generating non-functional security requirements. Other
approaches for identifying security requirements include
misuse or abuse cases [13], anti-goals [14], and assurance
arguments [15].

A recent analysis of various SRE methods [16] indicates
that despite the availability of a number of SRE methods, only
a handful of these methods have been used in practice. Their
findings, based on feedback from practitioners across various
organizations, also highlight that SRE as a tool-assisted
process may facilitate secure software development. Efforts to
automate parts of SRE process have resulted in organizational
learning approach to SRE [17] that identifies when a security
requirement is added to a natural language artifact. This helps
build a repository of security requirements for consideration
and reuse in subsequent projects. Our process goes beyond
identifying explicit security requirements in text. We identify
implied security-relevant sentences in natural language
artifacts and associated security objectives. We also provide
context-specific templates to identify functional security
requirements to meet the identified objectives.

184

Another focus area related to security requirements
engineering has been on extracting security requirements from
regulatory texts ([18, 19]). Other researchers have explored
using natural language to generate access control policies ([20,
21]). The focus of our research is on extracting security
requirements from existing functional requirements and
requirements-like documents and we do not consider issues
related to regulatory compliance or policy specification.

C. Requirements Classification
While text classification, especially with regard to Term

Frequency - Inverse Document Frequency (TF-IDF), has been
studied for a relatively long period of time [22], non-
functional requirement (NFR) classification first appeared in
the literature in 2006 [23]. In their work, Cleland-Huang et al.
applied TF-IDF with an additional parameter to specify the
frequency of indicator terms for a NFR category as compared
to the appearance of those terms in the requirement currently
under test. Their work performed well with a 0.8129 recall,
successfully identifying 81% of the NFRs in the dataset.
However, their precision was 0.1244 indicating a large number
of false positives. Other researchers [24, 25] built upon this
work by using the same dataset as Cleland-Huang, but adopt
naïve Bayes and Support Vector Machine (SVM) classifiers.
Both experiments reported higher scores for precision than the
original research. We evaluated a number of different machine
learning algorithms for text classification and decided upon a
𝑘-NN classifier as its performance matched that of an SVM
classifier and analysts can more easily understand where
results were derived in the 𝑘-NN classifier.

III. SECURITY OBJECTIVES OF SOFTWARE SYSTEMS
By identifying the security objectives expressed or implied

by a particular sentence within a document, we gain an
understanding of the intent of the sentence as well as possible
requirements and mechanisms to establish that intent. Security
objectives of software systems involve not only technical
aspects from system development perspective but also
operational and management aspects. For the purpose of this
research however, we focus on technical security objectives of
software systems. While certain sets of security objectives are
widely known such as “Confidentiality, Integrity, and
Availability (CIA) Triad”, we want to ensure the completeness
of our security objective set.

RQ1: What are the core categories of security objectives in
existing literature that should be considered during the
security requirements engineering process?

We examined six security standards ([8, 26-30]), two
taxonomies of security objectives and requirements ([9, 14])
and two security seminal papers and books ([7, 31]). We
created a list of security objectives identified from the above
sources. We define each of the technical security objectives
below. The references from where these objectives have been
identified are listed after the objective's name. We also provide
example sentences from the set of documents we analyzed
(see Section V.A) that indicate the presence of corresponding

objective. The examples are numbered as: <Document ID>-
<Security Objective Abbreviation>.<#>.

Confidentiality (C) ([7-9, 14, 26, 29])

Example: "The system should provide the ability to
electronically capture patient data including medications, vital
signs, and other data as structured data" (EA-C.1)

: The degree to which
the "data is disclosed only as intended" [7]

Integrity (I) ([7-9, 14, 26, 29])

Example: "…the system shall provide the ability to mark
the information as erroneous in the record of the patient in
which it was mistakenly associated and represent that
information as erroneous in all outputs containing that
information." (ED-I.1)

: "The degree to which a
system or component guards against improper modification or
destruction of computer programs or data." [28]

Identification & Authentication (IA) ([8, 9, 14, 26, 29])

Example: "The system shall authenticate the user before
any access to Protected Resources (e.g. PHI) is allowed,
including when not connected to a network e.g. mobile
devices.” (CT-IA.2)

:
The need to establish that "a claimed identity is valid" for a
user, process or device. [27]

Availability (A) ([7-9, 14, 26, 29])

Example: “Provides business continuity in the situation
where the EHR system is not available by providing access to
the last available clinically relevant patient data in the EHR.”
(NU-A.3)

: "The degree to which a
system or component is operational and accessible when
required for use." [32]

Accountability (AY) ([7-9, 14, 26, 29])

Example: “Every entry in the health record must be
identified with the author and should not be made or signed by
someone other than the author.” (ED-AY.1)

: Degree to which
actions affecting software assets "can be traced to the actor
responsible for the action" [7]

Privacy (PR) ([8, 9, 14])

Example: “Nurses need to provide legitimate care in crisis
situations that may go against prior patient consent directives
("break the glass" situations)”. (NU-PR.2)

: The degree to which an actor can
understand and control how their information is used.

IV. SECURITY DISCOVERER
We now present our process, Security Discoverer (SD),

and its associated tool.

A. Overview
We have developed a four-step tool-assisted process for

identifying security requirements. As a first step, our tool
takes natural language requirements artifacts (requirement
specifications, feature requests, etc.) and a trained classifier
for the current problem domain as input. The tool parses the
artifacts as text sentences and identifies which (if any) security
objectives relate to each sentence. The tool then presents the
user with a list of applicable security requirements templates
for the identified objectives. The user then selects the

185

appropriate templates and completes the template with details
from the initial requirement. Our tool2

B. Step 1: Pre-process Artifacts

 provides an authoring
mechanism to finalize the identified security requirements.
The tool also supports traceability of generated security
requirements to source sentences in input artifacts. We explain
the steps of the SD process below.

We import a natural language requirement artifact into the
SD tool to prepare each sentence to be classified with relevant
security objective(s). A user first needs to convert the artifact
into a text only format. Generally, this conversion can be
accomplished through the “Save As” format within Microsoft
Word or other document applications. As such, this process
will not convert tables or images properly and the user will
need to manually perform the conversion for those sections.
Once the artifact has been prepared, the tool will first read the
entire text into the system. Next, to provide additional context
and features for the classifier, the tool applies a concise
document grammar (Figure 1) to label each sentence in the
text to a specific type:
• title: Sentences that follow capitalization rules for titles.
• list start: These sentences represent the header or

description of a list that follows.
• list element: These sentences represent individual items

contained within an ordered or unordered list. These
sentences are combined with the start of the list when sent
to the parser and for classification. Combining the two
provides additional context to both human analysts and
machine classifiers.

• normal sentence: These sentences are not considered as
titles, list starts, or list elements.

Further, we identify heading and list identifiers (e.g.,
“4.1.1” and “•”) and remove those identifiers from sentences
used in classification. These identifiers create superficial
differences among sentences and can possibly skew
classification results. When sentences are classified in the next
step, we combine “list start” with each identified “list
element” as part of the same list to provide additional context.

Within Figure 1, italicized words represent nonterminal
symbols that can be replaced by other symbols on the right-
hand side. Words in normal font are terminal symbols.
Characters within quotation marks are also specific terminal
symbols. λ represents an empty expansion of a nonterminal.

Document → Line
Line → listID title line | title line | sentence line | λ
sentence → normalSentence | listStart (“:” | “-”) listElement
listElement → listID sentence listElement | λ
listID → listParanID | listDotID | number
listParanID → “(” id “)” listParanID | id “)” listParanID | λ
listDotID → id “.” listDotID | λ
id → letter | romanNumeral | number

Fig. 1. Document Grammar
While we do not expect the documents to be well-formed,

our process works better with shorter, well-formed sentences.

2 Source code available at: http://go.ncsu.edu/securitydiscoverer/

C. Step 2: Classify for Security Objectives
We classify each sentence in the input into zero or more

security objectives. The classifier can be created in one of
three ways: 1) training a new classifier by manually
classifying sentences for security objectives from related
projects; 2) utilizing an existing classifier; or 3) utilizing the
tool in an interactive fashion to provide recommendations for
classifications to aid the manual process.

We utilize a 𝑘-NN classifier for this step. Such classifiers
work by taking a majority vote of the existing classifications
of the 𝑘 nearest neighbors to the item under test. To determine
the closest sentence(s), we apply a custom distance function
based upon a modified version of Levenshtein distance [33].
Rather than using the resulting number of edits to transform
one string into another as the value as the Levenshtein distance
does, our metric computes the number of word
transformations to change one sentence into another.
Repetition of words and phrases in different sentences can
help the classification process. While other machine learning
algorithms can provide similar performance to 𝑘-NN
classifier, the 𝑘-NN classifier provides for easier interpretation
of results by requirements engineers as they can see similar
sentences and associated classifications. The distance metric
can also be used within distance-based clustering algorithms
for further analysis.

Once the classification is complete, the user may review
the predicted security objectives for the security-relevant
sentences. If necessary, the user can correct the classified
objectives within the tool.

D. Step 3: Select Context-specific Templates
Once the security objectives have been identified for a

given sentence, the tool presents the user with a list of context-
specific security requirements templates for the security
objectives and values (such as action or time) present within
the sentence. The security templates are further discussed in
Section VII. A sample template for the objective
“accountability” is displayed in Table VI. The user selects
which templates apply to the given sentence. SD tracks which
templates have been selected. The usage data provides the
ability to determine which templates are most frequently used
and in what combination. Additionally, the data could be used
within a recommendation engine in future versions of the tool.

E. Step 4: Generate Requirement Sentences
Once the requirement templates have been selected by the

user, the tool presents the requirements text in an editor text
window for the user to complete. In situations where a
replaceable value has been found, the replacement is already
made. For instance, if an availability-related sentence specifies
“during business hours”, tool detects the time period and
would automatically place that phrase into the generated
requirement template. The tool maps generated requirements
to source sentences to produce a traceability matrix.

186

V. RESEARCH METHODOLOGY
In this section, we discuss our methodology for collecting

and preparing the selected documents for use within our study.

A. Study Documents
We have selected six freely-available natural language

requirements artifacts from the electronic healthcare domain,
listed in Table I. Due to regulation and standardization,
documents in healthcare domain generally tend to be well-
formed. However, we select a variety of document types,
including feature requests that are not well-formed. The
selected documents are from USA and Canada. Use of
different spellings for same words (e.g., color vs. colour) may
also affect the performance of our classifier.

B. Study Oracle
We have developed a study oracle to train our tool and

evaluate the performance of our classifier. To create the study
oracle, three researchers manually read each natural language
sentence in the six healthcare documents, and classify the
sentence with relevant security objectives as follows:

1) Convert the document into text-only format.
2) Import one text document into SD Tool, and parse the
document into individual sentences using natural language
processing (see Section IV.B).
3) Manually classify each sentence in a document.
 a) Classification Phase: For each document, two
researchers individually classify each sentence to identify
security objectives that apply to the sentence. The
classification phase results in the creation of two separate
output files (one per researcher) for each input document.
 b) Validation Phase: A third researcher generates a
difference report from the classifications of the other two
researchers. This third researcher resolves the differences
by communicating with the original two researchers to
generate consensus for creating a final, consolidated
classified corpus document.

Table I provides a document-wise breakdown of sentences
classified per security objective. Each sentence could be
classified in terms of zero or more security objectives. The
researchers spent a total of approximately 160 person-hours to
create and validate the oracle that we use for further analysis.
Researchers had a moderate agreement [34] on whether a
sentence was security-relevant or not (indicated by a kappa
score of 0.54). Of the security-relevant sentences, we had an
almost perfect agreement in terms of whether a sentence
explicitly talks about security or implies a need for security
(kappa score of 0.85). We also had a fair agreement on
classification of objectives for each sentence (kappa score of
0.32; kappa score tends to decrease as classification categories
increase). Requirements engineers looking to adopt our
process can incrementally build upon our existing classifier or
train a shared classifier for their domain over time by
classifying security-relevant sentences in natural language
artifacts. Performance of the classifier is expected to improve
as the number of classified sentences increases. Incrementally

evolving the classifier as a community will save time and
effort upfront while creating a knowledgebase of security-
relevant sentences and security objectives of software systems.

C. Study Procedure
Once the study oracle has been created, we execute a

variety of classifiers (our 𝑘-NN classifier and from Weka [35]
- a multinomial naïve Bayes classifier, and a SMO - sequential
minimal optimization classifier) on the document set. For each
classifier considered, we tested using a stratified n-fold cross-
validation and computed the precision, recall, and 𝐹1 measure.
To compute these values, we first need to categorize the
classifier’s predictions into three categories. True positives
(TP) are correct predictions. False positives (FP) are
predictions in which the sentence of another classification is
incorrectly classified as the one under evaluation. False
negatives (FN) are predictions in which a sentence of the same
classification under evaluation is incorrectly placed into
another classification. Precision (P) is the proportion of
correctly predicted classifications against all predictions for
the classification under test: P = TP/(TP + FP). Recall is the
proportion of classifications found for the current
classification under test: 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁). 𝐹1 measure is
the harmonic mean of precision and recall, giving equal
weight to both: 𝐹1 = 2 × 𝑃×𝑅

𝑃+𝑅
.

With the n-fold cross-validation, data is randomly
partitioned into n folds based upon each fold of approximately
equal size and equal response classification. For each fold, the
classifiers are trained on the remaining folds and then the
contents of the fold are used to test the classifier. The n results
are then averaged to produce a single result. We follow Han et
al.’s recommendation [36] and use 10 folds as this produces
relatively low bias and variance. The cross-validation ensures
that all sentences are used for training and that each sentence
is tested just once. We directly utilized Weka classifiers
through the available Java APIs utilizing their default options.
Since the Weka classifiers do not natively support multiple
classifications for an item, we created individual classifiers for
each algorithm and classification. As the folds are randomly
generated, we executed the tests 3 times and averaged the
results. To extract the top 20 keywords for each security
objective, we utilized the information gain [37] attribute
selector within Weka. Yang and Pedersen [38] found
information gain to be the most effective method for feature
selection in text classification.

D. Security Requirements Template Extraction
We analyze the classified set of sentences associated with

each security objective and identify commonalities in those
sentences based on the following attributes:
• Common patterns and themes in sentence structure
• Keywords in the sentences
• Clustering of sentences (k-mediods/LDA)
Based on our analysis, we develop templates that would

allow incorporating security requirements to meet
corresponding security objectives while maintaining neutrality
to the mechanisms. We discuss the templates in Section VII.

187

VI. EVALUATION
In this section, we address research questions RQ2 - RQ4.

RQ2: How often are security objectives explicitly stated or
implied in natural language requirements artifacts?

Based on the study oracle, we identified that 46% of the
sentences in input artifacts relate to security. Given that we
selected documents from industry standards and best practices
related to the healthcare domain (which involves protected
health information), security-relevant sentences intuitively
form a large proportion of the document. Of all the security-
relevant sentences, only 28% explicitly mention security (13%
of total sentences, similar to our earlier findings [3]), while
72% are functional requirements with security implication (an
additional 33% of total sentences). If implied security
objectives are not considered, requirements engineers may
overlook key security requirements. Table II provides a
document-wise breakdown of sentences and whether security
objectives were implied or explicitly stated.

From the security relevant sentences, we identified the
security objectives that are implied by each sentence. The top
three implied security objectives are accountability (34% of all
sentences), integrity (30%) and confidentiality (27%). Privacy
(2%), identification & authentication (~2%), and availability
(~1%) objectives were implied by only a small percentage of
all sentences. Our results indicate that 93% of the security-
relevant sentences implied more than one security objective.
Table III presents the 10 most frequently occurring security
objective groups. Confidentiality and accountability each
appear in 7 of 10 top objective groups, suggesting that
confidentiality and accountability are common security
objectives for healthcare systems. Integrity appears in 6 of 10
top objective groupings.

3 https://www.cchit.org/
4 http://www.hl7.org/
5 https://www.infoway-inforoute.ca/
6 http://oscarcanada.org/
7 https://www.infoway-inforoute.ca/
8 http://www.va.gov/vler/

The confidentiality, integrity, and accountability objectives
appear together in the classifications of 2,232 sentences (20%
of all sentences classified), suggesting a strong relationship
among the three. For example, the sentence “The system shall
provide a means to edit discharge instructions for a particular
patient” [ED] implies that the confidentiality of discharge
instructions should be maintained since it is protected health
information; that the integrity of the discharge instruction data
upon editing should be maintained; and that accountability
should ensure that the user editing the discharge instructions
can be held responsible.

Confidentiality and accountability appear together in the
classifications of 2,859 sentences (26% of all sentences
classified). The act of controlling access to sensitive data to
help promote confidentiality is closely tied to the act of
ensuring that a complete list of users who have accessed the
sensitive data may be maintained for accountability.
Therefore, in our study oracle, sentences that involve
create/read/update/delete actions upon sensitive data are often
classified as implying both confidentiality and accountability.

Integrity and accountability appear together for 3,119
sentences (28.5% of all sentences classified). With respect to
accountability, integrity helps ensure that the traces of user

TABLE I. DOCUMENTS AND ASSOCIATED SECURITY OBJECTIVE COUNTS

 Security Objectives
Doc.
ID Document Title #Sentences C

I IA A AY PR None

CT Certification Commission for Healthcare Information Technology
(CCHIT) Certified 2011 Ambulatory EHR Criteria3 331 252 214 19 14 260 5 6

ED Emergency Department Information Systems Functional Document4 2328 1162 1173 75 35 1354 76 773

NU Pan-Canadian Nursing EHR Business and Functional Elements
Supporting Clinical Practice5 264 67 77 4 26 43 10 96

OR Open Source Clinical Application Resource (OSCAR) Feature Requests6 5081 696 974 104 10 1184 18 3735

PS
Canada Health Infoway Electronic Health Record (EHR) Privacy and
Security Requirements7 1623 146 120 43 31 149 85 928

VL Virtual Lifetime Electronic Record User Stories8 1336 693 731 13 19 797 10 375
Total #

(%): 10963 3016
(27%)

3289
(30%)

258
(~2%)

135
(~1%)

3787
(34%)

204
(2%)

5913
(54%)

TABLE II. IMPLICIT AND EXPLICIT SECURITY-RELEVANT
SENTENCES

Doc
ID

Total
Sente
-nces

Explicit
Security

(%)

Implicit
Security

(%)

Total
Security

#(%)

Not
Security
Related

CT 331 89
 (27%)

236
(71%)

325
(98%)

6
(2%)

ED 2328 274
(12%)

1281
(55%)

1555
(67%)

773
(33%)

NU 264 41 (16%) 127
(48%)

264
(64%)

96
(36%)

OR 5081 174 (3%) 1172
(23%)

1346
(26%)

3735
(74%)

PS 1623 628
(39%)

67 (4%) 695
(43%)

928
(57%)

VL 1336 185
(14%)

776
(58%)

961
(72%)

375
(28%)

Tot-
al 10963 1391

(13%)
3659
(33%)

5050
(46%)

5913
(54%)

188

activity in the system may not be corrupted, modified, or
damaged so that users can always be held accountable.

Privacy and identification/authentication objectives also
appear in the top ten objective groupings, but are much less
common. Privacy and identification/authentication often
appear in combination with confidentiality, integrity, and/or
accountability objectives.

RQ3: How effectively can security objectives be identified and
extracted from selected set of documents?

We use recall and precision as measures to assess
effectiveness. Table IV presents the results of running the four
classifiers against the six documents using a ten-fold cross
validation. Creating a “Combined” ensemble classifier
demonstrated a slight performance gain over just using the
Weka SMO classifier. The “Combined” classifier uses the
results of the k-NN classifier if relatively close sentences were
found. Otherwise, the “Combined” classifier uses a majority
vote of the three classifiers. The k-NN classifier performed
equivalently to the SMO classifier. However, the advantage of
k-NN classifier comes into play with using the SD tool in an
interactive fashion. The classifier reports the sentences closest
to the current sentence under test along with the distance. This
allows an analyst to view similar sentences when making
choices as to the possible security objectives.

The reported precision of .82 implies that the tool correctly
predicted 82% of all the security objectives associated with the
sentences it classified. The recall score of .79 means that it
found 79% of all of the possible objectives. From an error
perspective, the precision score implies that 18% of the
identified objectives an analyst examines would be false
positives, and 21% of the possible objectives were not found.

RQ4: What similarities (words, phrases, grammatical
structure, etc.) exist among security-relevant sentences for
each security objective??

Overall, keywords are the primary indicator of security
objectives for identification/authentication, availability, and
privacy. However, for many confidentiality, integrity, and
accountability sentences, the grammatical structure of the
sentence is often the same. We use these similarities in

grammatical structure and keywords within the sentences of
each security objective to develop a set of context-specific
templates for composing security requirements. We discuss
the proposed templates in section VII.

Table V presents the top twenty keywords listed for
security objective. The set of keywords is very similar for
confidentiality, integrity, and accountability objectives. This
suggests a noticeable relationship among confidentiality,
integrity, and accountability objectives.

TABLE IV. TEN-FOLD CROSS VALIDATION

Classifier Precision Recall 𝑭𝟏 Measure
Naïve Bayes .66 .76 .71
SMO .81 .76 .78
k-NN (k=1) .80 .76 .78
Combined .82 .79 .80

Keywords “system”, “provide”, and “ability” commonly
appear in sentences classified as confidentiality, integrity,
and/or accountability. Sentences classified as confidentiality,
integrity, and/or accountability often appear in the form: “The
system shall provide the ability to <action> <resource>”. For
example, “The system should provide the ability to check
medications against a list of drugs noted to be ineffective for
the patient in the past” [ED]. Since the resource in the example
sentence involves access to medications (protected health
information), the sentence is classified as implying a
confidentiality objective. Likewise, since the sentence
involves interacting with protected information, the integrity
of the data must be maintained. Finally, since the sentence
involves a user accessing protected information, the system
should keep track of all users who have accessed the data so
that they may be held accountable.

For identification/authentication, top keywords include,
“authentication”, “login”, “username”, “user”, “authenticate”,
and “identify”. While the structure of sentences for
confidentiality, integrity, and accountability share a common
grammatical pattern, sentences for
identification/authentication share only common keywords
that suggest the need to know the identity of a user, or the
need to ensure that a user has authenticated into the system so
that they can be identified by unique credentials.

Similarly, top keywords for availability include “run”,
“availability”, “retain”, “time”, “destroy”, “retention”, and
“real-time”. Like identification/authentication, no grammatical
pattern exists for availability. Instead, keywords that suggest
temporal or data retention/destruction obligations are strong
indicators of the presence of an availability security objective.

Top keywords for privacy include “consent”, “phi”,
“disclosure”, “purpose”, and “privacy”. Again, no
grammatical pattern exists in the classified sentences for this
objective. Instead, common keywords that suggest privacy
objective include terms that involve a user (patients, in
healthcare documents) choosing to give consent, or disclosure
of protected information to anyone other than the patient.
Disclosure of protected information suggests that a user has
consented to disclose given information to a third-party.

TABLE III. FREQUENTLY OCCURRING OBJECTIVE GROUPS

Frequency
(% sec-
relevant)

Objective Group

2232 (44%) Confidentiality, Integrity, Accountability
702 (14%) Integrity, Accountability
443 (9%) Confidentiality, Accountability
106 (2%) Confidentiality, Integrity
104 (2%) Confidentiality, Identification & Authentication
98 (2%) Confidentiality, Accountability, Privacy

95 (~2%) Integrity, Accountability, Privacy
90 (~2%) Integrity, Identification & Authentication, Accountability
86 (~2%) Confidentiality, Identification & Authentication,

Accountability
83 (~2%) Confidentiality, Integrity, Privacy

189

VII. CONTEXT-SPECIFIC TEMPLATES
We have developed a set of context-specific templates to

translate individual security objectives for each sentence into a
set of concrete functional security requirements. We maintain
traceability between the original sentence in the natural
language artifact and generated security requirements.

RQ5: What common templates for specifying functional
security requirements can be empirically derived from the
security-relevant sentences?

We have extracted 19 context-specific templates9

• Confidentiality: C1-authorized access; C2-during storage;
C3-during transmission;

 based on
our analysis. Each template is associated with a particular
security objective and identifies the conditions under which
the template becomes applicable (e.g., based on the subject,
action or resource in the security-relevant sentence). Each
template also provides one or more reusable parameterized
security requirements that can be filled-in to generate system-
specific functional security requirements. The context-specific
templates, grouped by security objectives, are named below.
Details of the templates are available online. 9

• Integrity: I1- read-type actions; I2- write-type actions; I3-
delete actions; I4-unchangeable resources;

• Availability: A1-availability of data; A2-appropriate
response time; A3-service availability; A4-backup and
recovery capabilities; A5-capacity and performance;

• Identification & Authentication: IA1-select context for
roles; IA2-unique accounts; IA3-Authentication;

• Accountability: AY1-log transactions with sensitive data;
AY2-log authentication events; AY3-log system events;

• Privacy: PR1-usage of personal information;
We list example context-specific templates, along with

generated security requirements, in Table VI. Requirements
analysts should consider our set of context-specific templates
to determine which templates apply to each security-relevant

9 A complete list of context-specific templates and labeled documents

are available at: http://go.ncsu.edu/securitydiscoverer/

sentence in the project documentation. We intend a
requirements analyst to first identify security objectives using
the SD tool on the given project artifacts before considering
the templates. The tool produces a set of security objective
annotations for each sentence in the documentation and
suggests relevant templates. However if the security objectives
are already known, the templates can be used independent of
the tool as well. For example, for a sentence that the tool
annotates as having an accountability objective (or objective is
known a priori), the requirements analyst should consider
context-specific templates for accountability (AY1, AY2 or
AY39). If the sentence contains a subject acting upon sensitive
information, the requirements analyst should compose a total
of two security requirements to fulfill the sentence’s
accountability objective (see Table VI).

However, the newly composed security requirements also
contain related security objectives themselves. Consider the
generated security requirements for AY1 in Table VI. These
requirements suggest an integrity objective to prevent
modification of log files (I4). The template for AY1 captures
this relationship between accountability and integrity allowing
the requirements analyst to consider integrity when identifying
the security requirements for accountability. In Section VI, we
discussed how security objectives for confidentiality, integrity,
and accountability often appeared together in the
classifications for over 20% of the sentences. The cross-
references in our context-specific templates for composing
security requirements also reflect the strong relationships
among confidentiality, integrity, and accountability.

For a preliminary evaluation, we selected an example use-
case from iTrust electronic health record system10

39

 and applied
our process to generate security requirements based on the
sentences in the use-case. We identified 32 additional security
requirements based on the analysis of just one of the 60
documented use-cases for the system. We have also conducted
a user study to evaluate our process and templates for
identifying security requirements []. Results indicate that
our process supports the requirements engineering effort by
considering multiple security objectives and identifying an
initial set of candidate security requirements for the system.

10 http://agile.csc.ncsu.edu/iTrust/wiki/doku.php

TABLE V. TOP 20 KEYWORDS BY SECURITY OBJECTIVES

Security
Objective

Keywords

Confidentiality system, provide, ability, patient, result, vler, exam, capture, datum, record, send, display, medication, information, list, requirement,
status, consuming, order, complete

Integrity system, provide, ability, vler, exam, send, capture, result, datum, store, consuming, patient, pass, click, pick-list, status, application,
element, create, generate

Identification &
Authentication

authentication, login, mac2002, username, oscar, user, authenticate, identify, cash, identity, myoscar, password, waitlist, log,
registration, list2012, regen, uniquely, credentials, valid

Availability run, availability, datum, retain, time, year, nurse, destroy, application, legally, recent, retention, care, maximum, real-time,
information, period, destruction, record, historical

Accountability system, ability, provide, vler, exam, result, send, consuming, click, pass, patient, capture, pick-list, datum, application, audit, status,
store, record, list

Privacy consent, patient, person, phi, disclosure, purpose, privacy, directive, require, organization, ehrus, law, authorization, information,
connect, disclose, healthcare, inform, jurisdiction, collect

190

VIII. THREATS TO VALIDITY
We have considered following threats to validity:
Selection of problem domain: Study oracle created using

documents from healthcare domain may not be generalizable
to other domains due to different security objectives and
domain-specific vocabulary. Moreover, assets that need to be
protected are well understood in healthcare domain that may
facilitate identification of security-relevant sentences. Many
organizations adopt data classification guides that can be used
to help guide our process in other domains.

Selection of systems and documents: Security requirements
may come from different sources (requirements documents,
policy specifications, legislative texts, standards and best
practices). Variations may exist between security requirements
of software systems, even in the same domain. Thus, selection
of documents may influence the type and frequency of
identified security-relevant sentences.

Selection of security objectives: We have compiled a list of
security objectives based on various taxonomies. Our list of
security objectives may not be complete. To minimize this
threat, we have considered multiple sources from security
literature to identify the objectives. A general consensus on the
categorization of security objectives minimizes this threat.

Subjective assessment of security objectives: To develop
the study oracle, we carried out manual classification of
sentences, which can be subjective. Misclassification of
sentences based on security objectives in the oracle may have
occurred. To minimize this concern, two researchers
independently carried out the classification of each document
while a third researcher consolidated the final classification.
Inter-rater reliability ranges between 0.32 to 0.85, lending
validity to the process.

IX. CONCLUSION AND FUTURE WORK
Our work describes a tool-assisted process for identifying

key attributes of sentences to be used in security-related
analysis and specification of functional security requirements
using a set of context-specific templates. We have evaluated

our process on six documents from the electronic healthcare
domain, identifying 46% of sentences as implicitly or
explicitly related to security. Our classification approach
identified security objectives with a precision of .82 and recall
of .79. From our total set of classified sentences, we extracted
19 context-specific templates and associated reusable
functional security requirements. We also provide an oracle of
sentences labeled with relevant security objectives for the
healthcare domain11

To improve the recall of our classification approach and
identify security-relevant sentences that may have been
missed, we plan to consider features specific to each security
objective that may support the classification effort. For
instance, we are looking to extract tuples from input sentences
that can be used to implement access control. Presence of
these tuples can inform the classification for confidentiality
and accountability. Identification of such features will also
support development of security requirements patterns [

.

40],
extending our initial set of context-specific templates. We also
plan to evaluate the applicability of our process in domains
other than healthcare.

For practitioners, our research can help mitigate security
vulnerabilities early in the software development lifecycle by
identifying key security requirements that are hidden in plain
sight and may otherwise be overlooked.

ACKNOWLEDGEMENT
This work is supported by the USA National Security

Agency (NSA) Science of Security Lablet. Any opinions
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the NSA. We would like to
thank the North Carolina State University Realsearch group
for their helpful comments on the paper.

REFERENCES
[1] B. Fabian, S. Gürses, M. Heisel, T. Santen, and H. Schmidt, "A

comparison of security requirements engineering methods,"

11 http://go.ncsu.edu/securitydiscoverer/

TABLE VI. EXAMPLE CONTEXT-SPECIFIC SECURITY REQUIREMENTS TEMPLATES

Security
Objective Security Requirements Templates Generated Security Requirements

Account-
ability

AY1 Logging transactions with sensitive data
Given: <subject> = user or role

 <resource> = sensitive information
 <action> = create/read/update/delete

Add Security Requirements:
• The system shall log every time <subject> [performs the]

<action> <on|for> <resource>. [see C1, I4]
• At a minimum, the system shall capture the following information

for the log entry: <subject> identification, timestamp, <action>,
<resource>, and identification of the owner of <resource>. [see
IA2, C1, I4]

Input Sentence: The system should provide the ability to
check medications against a list of drugs noted to be
ineffective for the patient in the past.

Security Requirements:
• The system shall log every time user checks medications

against a list of drugs noted to be ineffective for the
patient in the past.

• At a minimum, the system shall capture the following
information for the log entry: user identification,
timestamp, check medication, patient identification.

• The system shall not allow modification of the log by any
user.* Integrity

I4 Maintaining integrity of unchangeable resources
Given: <resource> = write-once information (e.g., log files)

Add Security Requirements:
• The system shall not allow modification of <resource> by any

user. [see AY1]
* Last requirement is generated based on the template for integrity (I4) as suggested in template AY1. Templates for confidentiality can also be considered.

191

Requirements Engineering - Special Issue on RE'09: Security
Requirements Engineering, vol. 15, pp. 7-40, 2010.

[2] D. Mellado, C. Blanco, L. E. Sánchez, and E. Fernández-Medina,
"A systematic review of security requirements engineering,"
Computer Standards and Interfaces, vol. 32, p. 13, Jun. 2010.

[3] J. Slankas and L. Williams, "Automated extraction of non-
functional requirements in available documentation," in
International Conference on Software Engineering (ICSE) 1st
International Workshop on Natural Language Analysis in
Software Engineering (NaturaLiSE), 2013, pp. 9-16.

[4] D. G. Firesmith, "Engineering security requirements," J. Object
Technology, vol. 2, p. 16, Jan-Feb. 2003.

[5] D. G. Firesmith, "Specifying reusable security requirements,"
Jornal of Object Technology, vol. 3, p. 15, Jan-Feb. 2004.

[6] D. Mellado, E. Fernández-Medina, and M. Piattini, "A common
criteria based security requirements engineering process for the
development of secure information systems," Computer
Standards and Interfaces, vol. 29, pp. 244-253, Feb 2007.

[7] M. Schumacher, E. Fernandez-Buglioni, D. Hyberston, F.
Buschmann, and P. Sommerlad, Security Patterns: Integrating
Security and Systems Engineering. West Sussex: John Wiley &
Sons, Ltd, 2006.

[8] 2012, Common Criteria for Information Technology Security
Evaluation,Version 3.1. Release 4. Available:
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.
1R4.pdf

[9] D. Firesmith, "Specifying reusable security requirements," Jornal
of Object Technology, vol. 3, p. 15, Jan-Feb. 2004.

[10] D. Mellado, C. Blanco, L. E. Sánchez, and E. Fernández-Medina,
"A systematic review of security requirements engineering,"
Computer Standards & Interfaces, vol. 32, pp. 153-165, 2010.

[11] M. Howard and S. Lipner, The Security Development Lifecycle.
Redmond, WA: Microsoft Press, 2006.

[12] N. R. Mead, E. D. Houg, and T. R. Stehney, "Security Quality
Requirements Engineering (SQUARE) Methodology," Software
Engineering Inst., Carnegie Mellon University2005.

[13] G. Sindre and A. L. Opdahl, "Eliciting security requirements with
misuse cases," Requirements Engineering, vol. 10, p. 12, 2005.

[14] A. v. Lamsweerde, "Elaborating security requirements by
construction of intentional anti-Models," presented at the
International Conference on Software Engineering (ICSE 2004),
Edinburgh, Scotland, 2004.

[15] V. N. L. Franqueira, T. T. Tun, Y. Yu, R. Wieringa, and B.
Nuseibeh, "Risk and argument: A risk-based argumentation
method for practical security," presented at the IEEE
International Requirements Engineering Conference, 2011.

[16] P. Salini and S. Kanmani, "Survey and analysis on security
requirements engineering," Computers and Electrical
Engineering, vol. 38, p. 13, 2012.

[17] Kurt Schneider, Eric Knauss, Siv Houmb, Shareeful Islam, and J.
Jürjens, "Enhancing security requirements engineering by
organizational learning," Requirements Engineering, vol. 17, pp.
35-56, 2012.

[18] T. D. Breaux and A. I. Antón, "Analyzing regulatory rules for
privacy and security requirements," IEEE Transactions on
Software Engineering, vol. 34, pp. 5-20, Jan. 2008.

[19] J. C. Maxwell, A. I. Antón, and P. Swire, "A legal cross-
references taxonomy for identifying conflicting software
requirements," in Requirements Engineering, 2011, pp. 197-206.

[20] Q. He and A. I. Antón, "Requirements-based Access Control
Analysis and Policy Specification (ReCAPS)," Information and
Software Technology, vol. 51, pp. 993-1009, 2009.

[21] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie,
"Automated extraction of security policies from natural-language

software documents," in International Symposium on the
Foundations of Software Engineering (FSE), ed. Raleigh, North
Carolina, USA, 2012.

[22] G. Salton and M. J. McGill, "Introduction to Modern Information
Retrieval," 1986.

[23] J. Cleland-Huang, R. Settimi, and P. Solc, "The detection and
classification of non-functional requirements with application to
early aspects," in 14th IEEE International Requirements
Engineering Conference (RE'06), IEEE, 2006, pp. 39-48.

[24] A. Casamayor, D. Godoy, and M. Campo, "Identification of non-
functional requirements in textual specifications: A semi-
supervised learning approach," Information and Software
Technology, vol. 52, pp. 436-445, 2010.

[25] W. Zhang, Y. Yang, Q. Wang, and F. Shu, "An empirical study
on classification of non-functional requirements," in The Twenty-
Third International Conference on Software Engineering and
Knowledge Engineering (SEKE 2011), 2011, pp. 190-195.

[26] 2013, Security and Privacy Controls for Federal Information
Systems and Organizations. Available:
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800
-53r4.pdf

[27] 2001, Underlying Technical Models for Information Technology
Security. Available:
http://csrc.nist.gov/publications/nistpubs/800-33/sp800-33.pdf

[28] 2004, Standards for Security Categorization of Federal
Information and Information Systems. Available:
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-
final.pdf

[29] 2006, Minimum Security Requirements for Federal Information
and Information Systems Available:
http://csrc.nist.gov/publications/fips/fips200/FIPS-200-final-
march.pdf

[30] 2002, Federal Information Security Management Act. Available:
http://csrc.nist.gov/drivers/documents/FISMA-final.pdf

[31] J. H. Saltzer and M. D. Schroeder, "The protection of information
in computer systems," Communication of the ACM, vol. 17,
1974.

[32] 1990, IEEE Standard Glossary of Software Engineering
Terminology. Available:
http://standards.ieee.org/findstds/standard/610.12-1990.html

[33] V. I. Levenshtein, "Binary codes capable of correcting deletions,
insertions, and reversals," Soviet Physics Doklady, vol. 10, pp.
707-710, 1966.

[34] J. R. Landis and G. G. Koch, "The measurement of observer
agreement for categorical data," Biometrics, vol. 33, pp. 159-174,
1977.

[35] M. Hall, H. National, E. Frank, G. Holmes, B. Pfahringer, P.
Reutemann, and I. H. Witten, "The WEKA Data Mining
Software : An Update," SIGKDD Explorations, vol. 11, pp. 10-
18, 2009.

[36] J. Han, M. Kamber, and J. Pei, "Data Mining: Concepts and
Techniques," p. 744, 2011.

[37] J. R. Quinlan, "Induction of decision trees," Machine Learning,
vol. 1, 1986.

[38] Y. Yang and P. J.P., "A comparative study on feature selection in
text categorization " in Fourteenth International Conference on
Machine Learning (ICML'97), 1997, pp. 412-420.

[39] M. Riaz, J. Slankas, J. King, and L. Williams, "Using templates
to elicit implied security requirements from functional
requirements − A controlled experiment," to present at the
International Symposium on Empirical Software Engineering and
Measurement (ESEM), Torino, Italy, 2014.

[40] S. Withall, Software Requirement Patterns.: O'Reillly, 2007.

192

