
Access Control Policy Extraction from
Unconstrained Natural Language Text

John Slankas and Laurie Williams
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA

[john.slankas,laurie_williams]@ncsu.edu

Abstract—While access control mechanisms have existed
in computer systems since the 1960s, modern system
developers often fail to ensure appropriate mechanisms
are implemented within particular systems. Such failures
allow for individuals, both benign and malicious, to view
and manipulate information that they should not
otherwise be able to access. The goal of our research is to
help developers improve security by extracting the access
control policies implicitly and explicitly defined in natural
language project artifacts. Developers can then verify and
implement the extracted access control policies within a
system. We propose a machine-learning based process to
parse existing, unaltered natural language documents,
such as requirement or technical specifications to extract
the relevant subjects, actions, and resources for an access
control policy. To evaluate our approach, we analyzed a
public requirements specification. We had a precision of
0.87 with a recall of 0.91 in classifying sentences as access
control or not. Through a bootstrapping process utilizing
dependency graphs, we correctly identified the subjects,
actions, and objects elements of the access control policies
with a precision of 0.46 and a recall of 0.54.

Keywords—access control; documentation; machine learning;
natural language processing; relation extraction; security

I. INTRODUCTION
Despite significant remediation efforts over the past

decade, such as those due to information technology controls
required for Sarbanes-Oxley [1], and the highlighting of access
control errors in lists such lists as the CWE/SANS Top 25
Most Dangerous Software Errors [2], access control remains a
significant issue. In the 2013 Verizon Data Breach
Investigations Report [3], 61% of the incidents included some
form of access control abuse. To mitigate data security issues,
organizations must properly implement access control across
all system components. Access control is a critical application
mechanism to ensure confidentiality and integrity [4]. While
various access control models exist (discretionary, mandatory,
role-based, attribute, etc.), most models contain a tuple
(subject, resource, action) to represent a policy as to whether
or not the subject (a user) can perform the requested action on
the specified resource (object) within the system. Access
control policies are often expressed, implicitly or explicitly,

within nature language. For example, “The system shall allow
hospital administrators to inactive patients” explicitly grants
users who are hospital administrators the ability to inactivate
patients. However, creating and defining the correct access
control policies can be a tedious, time-consuming, and error-
prone endeavor. Developers must extract access control
policies from existing documentation, application code, and
database implementations.

The goal of our research is to help developers improve
security by extracting the access control policies implicitly and
explicitly defined in natural language project artifacts.

We propose a process, which we call Access Control
Relation Extraction (ACRE), which allows organizations to
utilize existing, unconstrained natural language text to extract
access control policies. ACRE analyzes requirements or other
natural language statements to obtain their subject, action, and
resource elements. The process utilizes a combination of
natural language processing (NLP), information extraction
(IE), and machine learning (ML) techniques. A critical
component to our process is the generation of appropriate
dependency graph patterns based upon an initial set of seeded
patterns and then expand the set of patterns through extracting
new patterns where combinations of any discovered access
control elements (subjects, actions, resources) can be located in
the current document sets under investigation. This approach of
learning new patterns from an initial set of seed patterns is
termed “bootstrapping” [5]. Due to the ambiguity and
multitude of different ways of representing concepts within
natural language, our process allows for humans to enter
undiscovered patterns or correct patterns misidentified in the
bootstrapping approach.

To evaluate our process, we developed the following
research questions:

RQ1: How effectively can we identify access control policies
in natural language text in terms of precision and recall?

RQ2: What common patterns exist in sentences expressing
access control policies?

RQ3: What is an appropriate set of seeded graphs to
effectively bootstrap the process to extract the access
control elements?

We evaluated our process and tool against an open source
educational testbed, the iTrust Electronic Health Records
System [6].

SocialCom/PASSAT/BigData/EconCom/BioMedCom 2013

978-0-7695-5137-1/13 $26.00 © 2013 IEEE

DOI 10.1109/SocialCom.2013.68

435

II. RELATED WORK
A. Natural Language and Access Control

Other researchers have explored using natural language to
generate access control policies from natural language. He and
Antón [7] proposed an approach based upon available project
documents, database design, and existing policies. Utilizing a
series of heuristics, humans would analyze the documents to
find additional access control policies. In addition to heuristics
to find the elements within the typical access control tuple
(subject, resource, action), they created heuristics to identify
policy constraints (temporal, location, relationship, privacy,
etc.) and obligations. More recently, Xaio et al. [8] present an
approach, Text2Policy, where they parsed use cases to create
eXtensible Access Control Markup Language 1 (XACML)
policies. Their approach was specific to use case-based
requirement specifications and relied upon matching four
specific sentence patterns to deduce the necessary information
to populate an access control method.

B. Controlled Natural Language
Other researchers have resolved converting natural

language to and from policies by utilizing a controlled natural
language (CNL). Schwitter [9] defines CNLs as “engineered
subsets of natural languages whose grammar and vocabulary
have been restricted in a systematic way in order to reduce
both ambiguity and complexity of full natural languages.”
While CNLs provide consistent, semantic interpretations,
CNLs limit authors and typically require language specific
tools to stay within the constraints of the language. Project
documents previously created cannot be used as inputs
without processing the documents manually into the tools.
Policies authored outside of tools must confirm to strict
limited grammars to be automatically parsed as well. Brodie et
al. [10] used this approach in the SPARCLE Policy
Workbench. By using their own natural language parser and a
controlled grammar, they were effectively able to translate
from controlled natural language into formal policy. Recently,
Shi and Chadwick [11] presented their results of an
application to author access control policies using a CNL.
While they showed the improved usability of CNL interface,
they were limited in the complexity of the policies that could
be created as the interface did not support conditions or
obligations. Our approach utilizes project artifacts without
change to the vocabulary or structure of the sentences.

C. Relation Extraction
A number of different ways exist to identify semantic

relations within text. Initial solutions employed hand-written
patterns to detect hyponym (“is-a”) relationships among words
[12]. While hand-written patterns usually have high precision,
they tend to suffer low recall by missing relation occurrences.
Snow et al. [13] used dependency paths and grammatical
relationships within a sentence to discover additional
relationship patterns. Akbik and Broß [14] used a similar
process to extract a diverse range of sematic relations with the
goal to extract arbitrary relations for semantic search.
Dependency parse tree patterns have been used to extracting
relations between genes and proteins [15]. We utilize

1 http://www.oasis-open.org/committees/xacml

dependency graphs, but extract the minimum graph pattern
that overlays the lowest common ancestor of all of the
included elements of the dependency graph. These elements
include the subject, action, the relation, and any contextual
information necessary to disambiguate the necessary
permissions for the access control policy. As with other works
[13], we include capability to bootstrap the possible graph
patterns and a naïve Bayes classifier to judge whether such
derived patterns should be include in the evaluation set.

III. ACCESS CONTROL RELATION EXTRACTION

A. Access Control and Natural Language
Within natural language texts, access control elements are

explicitly and implicitly stated. For example, “The system
shall allow patients to view their own medical records”
explicitly grants users who are patients the right to read their
medical records. Other sentences such as “A nurse can order a
lab procedure for a patient” implies two access control
policies. First, the nurse has some form of create or write
permission for lab procedures. Secondly, since the lab
procedure is for a patient, another access control policy
implicitly exists to grant the nurse read access to patients. In
many situations, the verb that typically represents the action
within the sentence implies the necessary permissions to be
granted. However, in some cases, the permissions are not
necessarily so straightforward. As with the second example,
the verb “order” combined with the prepositional phrase, “for
the patient”, implies read access to a patient.

B. ACRE Access Control Policy Representation
Internally, we represent sentences with a dependency

graph as depicted in Fig. 1 for the sentence “a nurse can order
a lab procedure for a patient.” (In the next section, we discuss
how these graphs are produced.) Each vertex represents a
word from the sentence along with the word’s part of speech.
In the figure, “NN” represents a noun, “VB” represents a verb,
and “MD” represents a modal verb. Edges represent the
grammatical relationship between two words. For instance,
“nurse” functions as the nominal subject (nsubj) for “order”
and “dobj” is the object to be ordered. Dependency graphs can
be considered trees in most situations and are typically rooted
by the sentence’s main verb.

Figure 1: ACRE Sentence Representation

To represent an access control policy, we utilize the
following pattern, termed an “access control pattern”:

 ������ ���� �	��
���

�� ���� �� �� (1)

� defines the overall access control policy. ��contains an
order set of vertices that compose the subject of a policy.
Similarly, � and 	 represent the action and resource,
respectively. � contains the vertex representing negativity if

436

required for the policy. If the policy should be limited to a
particular subject �,
 contains the indicating vertex. � contains
any additional vertices required to provide context to given
action for a set of permissions. � represents the subgraph of a
sentence’s dependency graph that contains the vertices and
necessary edges to connect all of the vertices listed in
�� �� 	� ��
� �. � represents the permissions typically associated
with an action. We limit permissions to have the values of
“create”, “retrieve”, “update”, and “delete” as we are
primarily concerned with controlling the ability to view and
manipulate data in systems.

Situations exist in which not all of the access control
policy elements may be present within a single sentence.
These access control policies may be identified with missing
elements. Developers would be directed to the surrounding
sentences to finish defining the access control policy.

C. Access Control Relation Extraction Process
The ACRE process consists of five primary steps:

1. Parse text document
2. Parse natural language
3. Classify sentence as access control or not
4. Extract access control elements
5. Validate access control policies

For input, the process takes any natural language document
converted into a text only format. For the output, the extracted
access control policies are listed along with any issues
discovered for completeness and consistency. To assist
developers with this process, we have developed a
corresponding tool to automate most tasks, provide the ability
for developers to correct classification issues, and to provide
manual identification of access control policies which the
process has been unable to find.

Step 1: Parse Text Document
The process first reads the entire text into the system. We

then separate the input into tokens by either new lines or by
periods at the end of sentences. Next, we apply a concise
document grammar (Fig. 2) to label each token to a specific
type:

• title: Lines which follow capitalization rules for titles. We
separate them from other lines in our process because
titles never indicate an access control related requirement.

• list start: These lines represent the header or description
of a list that follows.

• list element: These lines represent individual items
contained within an ordered or unordered list. These lines
are combined with the start of the list when sent to the
parser. Combining the two provides additional context to
both human analysts and machine classifiers.

• normal sentence: These lines represent statements that are
not considered titles, list starts, or list elements.

Step 2: Process Natural Language
After identifying the different sentence types, the process

parses each line (sentence) with the Stanford Natural
Language Parser (NLP) and outputs a graph in the Stanford
Type Dependency Representation (STDR) [16]. While the

parser has several output formats available, we choose the
STDR because it incorporates the sentence’s syntactic
information in a concise and usable format.

To replace shorthand or remove text that the parsing would
not recognize, the process allows for a series of regular
expressions to be applied to the text. Specifically in our work,
we use this mechanism to replace ‘w/’ with ‘with’ and ‘/’ with
‘or.’ Additionally, As the Stanford Parser processes sentences,
it tags each word with a part of speech. Due to differences in
text used to train the parser versus text used by our process,
the parts of speech may be incorrect. To overcome this issue,
we inserted a custom method into the parsing pipeline to
override the part of speech tags if they are incorrect. For
instance, we discovered that the parser always tagged
“displays” as a plural noun whereas in most sentences in our
text “displays” is a verb. Both overrides are configurations
established at the time the tool starts and are applied without
user intervention to the entire text.

Fig. 3 demonstrates the produced STDR for the sentence
“a nurse can order a lab procedure for a patient.” Each vertex
contains a word from the sentence along with that word’s part
of speech. In the figure, “DT” represents a determiner, “MD”
a modal verb, “NN” a noun, and “VB” indicates a verb. Edges
represent the grammatical relationship between two words.
For instance, “nurse” functions as the nominal subject (nsubj)
for “order” and “dobj” is the object to be ordered.

From the STDR generated by the parser, we create our
sentence representation (SR) as ACRE needs to track
additional attributes for the sentence and for each word.
Additionally, some words in the original sentence are not
required for our purposes and, hence, removed from the SR.

Figure 3: Stanford Collapsed Type Dependency Graph

Fig. 1 shows our corresponding SR for the same sentence
as in Fig 3. The primary differences between the two graphs
are the number of vertices and how each word is represented

document � line

line � listID title line | title line | sentence line | �

sentence � normalSentence | listStart (“:” | “-”) listElement

listElement � listID sentence listElement | �

listID � listParanID | listDotID | number

listParanID � “(” id “)” listParanID | id “)” listParanID | �

listDotID � id “.” listDotID | �

id � letter | romanNumeral | number

Figure 2. Document Grammar

437

within a vertex. Within our SR, vertices correspond to words
in the sentence and contain the word, the word’s lemma, part
of speech, domain flag, and access control policy indicators.
The indicators correspond to the subject(“S”), action(“A”),
resource(“R”) typically defined within an access control tuple.

Using a pre-order traversal, the process creates the SR
from the Stanford graph. As each vertex is created, we make
two changes to the nodes. First, to avoid multiple versions of
the same word, we use the lemma of the original word.
Second, to avoid differences in the part of speech, we collapse
the parts of speeches for all nouns and verbs to their base
category. For example, we treat all plural nouns and proper
nouns as just nouns. Similarly, verbs with different tenses are
treated collectively as a single group. We use a very small stop
word list to remove common determiners 2 from the SR.
Additionally, we check if it is feasible to collapse adjective
and noun modifiers into parent noun nodes. Fig. 1
demonstrates this collapsing as we combined “lab” and
“procedure”. By removing extraneous nodes from the SR, we
reduces the overall size of each graph, which in turn, provides
fewer irrelevant attributes to a machine learning algorithm and
provides for more concise patterns to be used in extracting
access control policies.

Step 3: Classify Sentence as Access Control or not
After Step 1 and Step 2 are both completed, a machine-

learning algorithm classifies a sentence as access control or
not. If the sentence does not express an access control policy,
we perform no further analysis on it.

The process uses a combination of a �-NN classifier, naïve
Bayes, and an SVM classifier. In prior work [17], we found
that if we used a similarity threshold for the nearest
neighbor(s) to determine whether or not to provide a
classification answer, the � -NN classifier �� performance
would be 1.0 (no misclassifications), although not all of the
sentences would be classified. As such, we decide to utilize
multiple machine learning algorithms to produce the final
classification result. If the �-NN classifier’s threshold is below
a certain ratio (0.6) based upon the computed distance to the
nearest neighbor(s) compared to the length of the sentence, we
return the �-NN classifier’s answer. Otherwise, we return a
majority vote of the �-NN, naïve Bayes, and SVM classifiers.
We term this classifier as “Combined SL.”

Step 4: Extract Access Control Elements
Next, we need to extract the subject, action, and resource

elements from the SR. We utilize a relation extraction
approach for the identification of access control elements and
subsequent extraction of the process. The approach follows a
well-known bootstrapping technique [5], but has been adapted
specifically for access control policy extraction.

To initialize the process (presented in Fig. 5), we seed a set
of ten patterns with each pattern consisting of just three nodes.
Each pattern is the same, except a different verb3 is utilized for
“Specific Action”. The subjects and resources are marked

2 a, an, the
3 create, retrieve, update, delete, edit, view, modify, enter, choose,

select

with wildcards such that the pattern can match any nouns in
sentences. We initially choose the words “create”, “retrieve”,
“update”, and “delete” because the words are commonly
associated with viewing and manipulating data. We then
examined the frequency of all verbs within the document and
chose to add six more verbs associated with data and
appearing with high frequencies within the document. From
these patterns, we match all occurrences of the subjects and
resources within the document along with their associate
frequency counts. From the counts, we computed the mean
values for the subjects and resources. We then assume any
word that occurs more than the mean legitimately belongs to
the application domain. Without a threshold, the potential for
misidentified subjects and resources is much greater as any
word matching the pattern would be accepted.

The subjects and resources are then stored in a listing of
known subjects and resources. From this listing, we then
search the document where any subject exists along with any
resource. For each sentence that does match the condition, we
extract the dependency pattern between subject and resource
vertices. We then assume any verbs existing in that pattern are
the actions. If more than one verb exists in the shortest path
from the subject to the object, we combine the verbs. In the
sentence, “the administrator chooses to create a new patient”,
we combine “choose” and “create” to “choose create” for the
action. The subject would be “administrator” and the object
would be “patient”. We derive permissions for each pattern
based finding the closest synonym in WordNet 4 where
permissions have already been defined in the process for an
action.

Once we have extracted the pattern, we also apply a series
of transformations to extract additional patterns that may
locate additional access control policies. Specifically, we
transform patterns that have an active voice into passive voice
and vice versa. We also transform the patterns to assume
conjunctions may exist for two or more subjects, two or more
actions, and two or more resources. From the pattern set, we
then search the documents for any sentences matching one or
more patterns. Once we find any match, we check to see if one
of the other patterns matches the same sentence. If more than
one pattern does match and one pattern can be considered a
“sub-pattern” of another pattern, we discard the “sub-pattern”
match from the list of results as the other graph has provided a
more specific match. Additionally, we check the matched
sentences for any children nodes of the matched pattern that
imply negativity or subject limitation (i.e., we look to see if
there is relevant indicator just outside of the match subgraph).

The extracted access policy is then stored in a list for
validation and output to the user. Any new subjects or
resources are then added to the list of known subjects and
resources. If newly discovered subjects or resources exist, then
the bootstrapping process can repeat until no new items or
patterns are discovered. Once the process has stopped, the user
may manually identify access control patterns. The
information from these patterns is feed into the process to
search for additional extracted elements.

4 http://wordnet.princeton.edu/

438

Seed
Patterns

Match Subject
and Resources

Known
Subjects &
Resources

Subject &
Resource

Search

Pattern
Extraction and
Transformation

Manually
Identified
Patterns

Patten Set
Pattern
Search

Extracted Access
Control Patterns

Figure 5: Access Control Extraction Overview

Step 5: Validate Access Control
In this step, the tool checks for coverage and conflicts

within the extracted access control policies. Coverage is
reported as measure for each subject as to the number of
identified resources that it has access control rules identified.
As we assume a default of no-access, 100% coverage is not
required. However, low coverage values may indicate a need
for further access control policies. Conflicts occur within our
process when a specific subject has been both granted
permission to a specific resource and restricted for the same
permission on the same resource. Such conflicts may arise due
to policy extraction in multiple locations or the use of a limiter
to restrict access to a specific subject.

IV. EVALUATION METHODOLOGY

A. Application: iTrust
To evaluate the procedure, we used iTrust as our test

system. The requirements consist of 40 use cases plus
additional non-functional requirements, constraints, and a
glossary. The version we used contained 1159 sentences with
409 (36.7%) of those sentences determined to contain one or
more access control policies.

B. Study Oracle
First we created our oracle in which we manually

classified each statement in the iTrust Requirements
Specification. We first converted the document into a text-
only format. Next, we opened the document in the ACRE Tool
to classify each sentence. The first authors classified the 1,159
sentences (or lines) in seven hours.

After the initial classification was completed, we validated
the classification through several approaches. First, we used a
k-medoids clustering algorithm to compute clusters of related
sentences. We then compared the classifications within each
cluster. and investigated further those sentences that did not
have the same classification as other sentences in the group.
Additionally, as we classified each sentence, we had access to
the neighbors contained within the k-NN classifier. This
approach allowed for more rapid manual classification by
suggesting initial classification that we could then verify or
correct as deemed necessary. Additionally, any discrepancies
in the predicted classification could be easily traced back to
the source sentences.

Next, the first author spent twelve hours to manually
identify the subjects, actions, and resources for the access
control policies in the 409 sentences.

C. Study Procedure
Once the oracle has been created, we executed five

classifiers (the � -NN classifier, a TF-IDF classifier, the
“Combined SL” classifier, a multinomial naïve Bayes
classifier and a SVM - sequential minimal optimization
classifier) on the requirements document. For each classifier
considered, we tested using a stratified n-fold cross-validation
and computed the precision, recall, and ���measure. We follow
Han et al.’s recommendation [18] and use 10 as the value for n
as this produces relatively low bias and variance. The cross-
validation ensures that all sentences are used for training and
that each sentence is tested just once.

In the final phase of the study, we examined seeding the
process with different sets of initial actions (verbs). From the
patterns generated, we extracted the access control policies
from the requirements document and compared the extracted
to the manually identified policies.

V. EXPIREMENTAL RESULTS
RQ1: How effectively can we identify access control
policies in natural language text in terms of precision and
recall?

Table 1 presents the results of executing each classifier against
the entire document set using a ten-fold cross validation. We
executed each test three times and present the average.

Table 1. Stratified Ten-Fold Cross Validation

Classifier Precision Recall �� Measure

Naïve Bayes .743 .940 .830
SMO .845 .830 .837
TF-IDF .588 .995 .739
k-NN (k=1) .851 .830 .840
Combined SL .873 .908 .890

Creating the “Combined SL” classifier did produce some
performance gains from using individual classifiers as the ��
Measure was .05 higher than the next best performer (k-NN,
k=1). For the k-NN classifier, we did experiment with various
values for k and found one produced the best performance.

RQ2: What common patterns exist in sentences expressing
access control policies?

By examining the most frequently occurring patterns from our
manual identification, we found that the seed pattern occurred
in 25% of the sentences marked for access control. This
occurrence doesn’t require a small sentence, but rather
somewhere in the sentence we found three nodes and two
edges of that pattern. Another frequently occurring pattern
(8%) occurs with sentences start with “The subject
[chooses|selects] to perform action.” A wide range of patterns
existed due to differences in prepositions represented on edges.

RQ3: What is an appropriate set of seeded graphs to effectively
bootstrap the process to extract the access control elements?

439

To evaluate this question, we started the process with different
sets of base words and then compared the quantity of patterns
generated and the performance of those patterns to extract the
correct access control statements from the sentence. The best
performance came with the set of 10 action verbs defined for
the seed with a precision of .463 and a recall of .536.

VI. LIMITATIONS
Several limitations exist within this work. As ACRE

utilizes NLP techniques, the process and associated tool cannot
extract information contained in images. With regards to access
control policies, our bootstrapping approach does not take into
account the presence of contextual information or conditions
that may affect the generated access control. The user can
manually enter such information, though. We also assume all
necessary information for an access control policy is contained
within the same sentence. It is feasible for elements either to
exist in surrounding sentences. We also have not handled
resolution issues at this time. These issues occur when a
pronoun or generic term such as “system” or “data” is used in
place of a descriptive term. Our work has a significant external
validity threat as we examined only one document for one
system in a specific problem domain. While the process does
not have any specific problem domain constraints, additional
evaluation needs to occur across multiple domains and
applications.

An internal validity threat may exist as the first author
performed all of the sentence classifications and access control
policies. To check the accuracy of the first author’s
classifications, we had five software developers classify a
representative sample of 30 sentences. Utilizing Randolph’s
Online Kappa Calculator [19], we calculate a free-marginal
kappa of 0.86 (indicating significant inter-rater agreement) by
comparing the first authors classification against the majority
vote of the other raters.

VII. CONCLUSION AND FUTURE WORK
For future work, we plan to continue work on the tool to

resolve the resolution issues presented in the previous section.
We also plan to develop a much larger corpus of text
documents for multiple systems in two or three domains.
Utilizing the corpus, we can more effectively measure how the
process performs and would generalize to other systems and
problem domains.

In this paper, we present a new process, ACRE, and tool
that assist developers in automatically extracting access control
policies from natural language text. The tool provides a
mechanism for developers to quickly generate an initial set of
access control policies with traceability back to the originating
set. Developers can utilize the process to detect conflicts in
generated policies as well as evaluate the coverage of
generated policies to the identified subjects and resources. We
demonstrated how effective a bootstrapping process can extract
policies from a very small initial set of patterns. We also
presented a grammar that can be applied when parsing text
documents to provide additional context information for
specific elements within the document.

As we utilized a cross-fold validation on a single document,
our combined classifier showed very effective performance
with a �� Measure of .89. We also showed improved
performance through combine the results of multiple
classifiers. However, our performance in extracting access
control patterns was substantially less with a precision of .463
and a recall of .536.

ACKNOWLEDGMENT
This work was supported by the U.S. Army Research

O�ce (ARO) under grant W911NF-08-1-0105 managed by
NCSU Secure Open Systems Initiative (SOSI).

REFERENCES
[1] J. Bedard, R. Hoitash, U. Hoitash, and K. Westermann, “Material

Weakness Remediation and Earnings Quality: A Detailed Examination
by Type of Control Deficiency,” Auditing: A Journal of Practice &
Theory, 2012.

[2] “2011 CWE/SANS Top 25 Most Dangerous Software Errors,” 2011.
[Online]. Available: http://cwe.mitre.org/top25/. [Accessed: 14-Nov-
2011].

[3] Verizon RISK Team, “2013 Data Breach Investigations Report,” 2013.
[4] P. Samarati and S. di Vimercati, “Access Control: Policies , Models ,

and Mechanisims,” in in Foundations of Security Analysis and Design,
Springer Berlin / Heidelberg, 2001, pp. 137–196.

[5] D. Jurafsky and J. Martin, Speech and Language Processing: An
Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition, Second. Pearson, 2009, p. 988.

[6] A. Meneely, B. Smith, and L. Williams, “iTrust Electronic Health Care
System: A Case Study,” in in Software System Traceability, 2011.

[7] Q. He and A. I. Antón, “Requirements-based Access Control Analysis
and Policy Specification (ReCAPS),” Information and Software
Technology, vol. 51, no. 6, pp. 993–1009, Jun. 2009.

[8] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated
Extraction of Security Policies from Natural-Language Software
Documents,” in International Symposium on the Foundations of
Software Engineering (FSE), 2012.

[9] R. Schwitter, “Controlled Natural Languages for Knowledge
Representation,” in Proceedings of the 23rd International Conference
on Computational Linguistics, 2010, pp. 1113–1121.

[10] C. a. Brodie, C.-M. Karat, and J. Karat, “An Empirical Study of Natural
Language Parsing of Privacy Policy Rules Using the SPARCLE Policy
Workbench,” Proceedings of the second symposium on Usable privacy
and security - SOUPS ’06, p. 8, 2006.

[11] L. Shi and D. Chadwick, “A Controlled Natural Language Interface for
Authoring Access Control Policies,” in Proceedings of the 2011 ACM
Symposium on Applied Computing, 2011, pp. 1524–1530.

[12] M. Hearst, “Automatic acquisition of hyponyms from large text
corpora,” in Proceedings of the 14th conference on Computational
Linguistics, 1992, pp. 539–545.

[13] R. Snow, D. Jurafsky, and A. Y. Ng, “Learning Syntactic Patterns for
Automatic Hypernym Discovery,” in Advances in Neural Information
Processing Systems 17, 2004, vol. 17, pp. 1297–1304.

[14] A. Akbik and J. Broß, “Wanderlust: Extracting semantic relations from
natural language text using dependency grammar patterns,” in Workshop
on Semantic Search, 2009, vol. 491.

[15] K. Fundel, R. Küffner, and R. Zimmer, “RelEx--relation extraction
using dependency parse trees.,” Bioinformatics (Oxford, England), vol.
23, no. 3, pp. 365–71, Feb. 2007.

[16] M.-C. de Marneffe, B. MacCartney, and C. Manning, “Generating
Typed Dependency Parses from Phrase Structure Parses,” Proceedings
of Language Resources and Evaluation, pp. 449–454, 2006.

[17] J. Slankas and L. Williams, “Classifying Natural Language Sentences
for Policy,” 2012 IEEE International Symposium on Policies for
Distributed Systems and Networks, pp. 33–36, Jul. 2012.

[18] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
3rd ed. Morgan Kaufmann, 2011, p. 744.

[19] J. J. Randolph, “Online Kappa Calculator,” 2008. [Online]. Available:
http://justusrandolph.net/kappa/. [Accessed: 02-Apr-2013].

440

