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Abstract—While access control mechanisms have existed 
in computer systems since the 1960s, modern system 
developers often fail to ensure appropriate mechanisms 
are implemented within particular systems. Such failures 
allow for individuals, both benign and malicious, to view 
and manipulate information that they should not 
otherwise be able to access. The goal of our research is to 
help developers improve security by extracting the access 
control policies implicitly and explicitly defined in natural 
language project artifacts. Developers can then verify and 
implement the extracted access control policies within a 
system. We propose a machine-learning based process to 
parse existing, unaltered natural language documents, 
such as requirement or technical specifications to extract 
the relevant subjects, actions, and resources for an access 
control policy. To evaluate our approach, we analyzed a 
public requirements specification. We had a precision of 
0.87 with a recall of 0.91 in classifying sentences as access 
control or not. Through a bootstrapping process utilizing 
dependency graphs, we correctly identified the subjects, 
actions, and objects elements of the access control policies 
with a precision of 0.46 and a recall of 0.54. 

Keywords—access control; documentation; machine learning; 
natural language processing; relation extraction; security 

I. INTRODUCTION 
Despite significant remediation efforts over the past 

decade, such as those due to information technology controls 
required for Sarbanes-Oxley [1], and the highlighting of access 
control errors in lists such lists as the CWE/SANS Top 25 
Most Dangerous Software Errors [2], access control remains a 
significant issue. In the 2013 Verizon Data Breach 
Investigations Report [3], 61% of the incidents included some 
form of access control abuse. To mitigate data security issues, 
organizations must properly implement access control across 
all system components. Access control is a critical application 
mechanism to ensure confidentiality and integrity [4]. While 
various access control models exist (discretionary, mandatory, 
role-based, attribute, etc.), most models contain a tuple 
(subject, resource, action) to represent a policy as to whether 
or not the subject (a user) can perform the requested action on 
the specified resource (object) within the system. Access 
control policies are often expressed, implicitly or explicitly, 

within nature language. For example, “The system shall allow 
hospital administrators to inactive patients” explicitly grants 
users who are hospital administrators the ability to inactivate 
patients. However, creating and defining the correct access 
control policies can be a tedious, time-consuming, and error-
prone endeavor. Developers must extract access control 
policies from existing documentation, application code, and 
database implementations. 

The goal of our research is to help developers improve 
security by extracting the access control policies implicitly and 
explicitly defined in natural language project artifacts.  

We propose a process, which we call Access Control 
Relation Extraction (ACRE), which allows organizations to 
utilize existing, unconstrained natural language text to extract 
access control policies. ACRE analyzes requirements or other 
natural language statements to obtain their subject, action, and 
resource elements. The process utilizes a combination of 
natural language processing (NLP), information extraction 
(IE), and machine learning (ML) techniques. A critical 
component to our process is the generation of appropriate 
dependency graph patterns based upon an initial set of seeded 
patterns and then expand the set of patterns through extracting 
new patterns where combinations of any discovered access 
control elements (subjects, actions, resources) can be located in 
the current document sets under investigation. This approach of 
learning new patterns from an initial set of seed patterns is 
termed “bootstrapping” [5]. Due to the ambiguity and 
multitude of different ways of representing concepts within 
natural language, our process allows for humans to enter 
undiscovered patterns or correct patterns misidentified in the 
bootstrapping approach.  

To evaluate our process, we developed the following 
research questions: 

RQ1: How effectively can we identify access control policies 
in natural language text in terms of precision and recall? 

RQ2: What common patterns exist in sentences expressing 
access control policies? 

RQ3:  What is an appropriate set of seeded graphs to 
effectively bootstrap the process to extract the access 
control elements? 

We evaluated our process and tool against an open source 
educational testbed, the iTrust Electronic Health Records 
System [6]. 

SocialCom/PASSAT/BigData/EconCom/BioMedCom 2013

978-0-7695-5137-1/13 $26.00 © 2013 IEEE

DOI 10.1109/SocialCom.2013.68

435



II. RELATED WORK 
A. Natural Language and Access Control 

Other researchers have explored using natural language to 
generate access control policies from natural language. He and 
Antón [7] proposed an approach based upon available project 
documents, database design, and existing policies. Utilizing a 
series of heuristics, humans would analyze the documents to 
find additional access control policies. In addition to heuristics 
to find the elements within the typical access control tuple 
(subject, resource, action), they created heuristics to identify 
policy constraints (temporal, location, relationship, privacy, 
etc.) and obligations. More recently, Xaio et al. [8] present an 
approach, Text2Policy, where they parsed use cases to create 
eXtensible Access Control Markup Language 1  (XACML) 
policies. Their approach was specific to use case-based 
requirement specifications and relied upon matching four 
specific sentence patterns to deduce the necessary information 
to populate an access control method. 

B. Controlled Natural Language 
Other researchers have resolved converting natural 

language to and from policies by utilizing a controlled natural 
language (CNL). Schwitter [9] defines CNLs as “engineered 
subsets of natural languages whose grammar and vocabulary 
have been restricted in a systematic way in order to reduce 
both ambiguity and complexity of full natural languages.” 
While CNLs provide consistent, semantic interpretations, 
CNLs limit authors and typically require language specific 
tools to stay within the constraints of the language. Project 
documents previously created cannot be used as inputs 
without processing the documents manually into the tools. 
Policies authored outside of tools must confirm to strict 
limited grammars to be automatically parsed as well. Brodie et 
al. [10] used this approach in the SPARCLE Policy 
Workbench. By using their own natural language parser and a 
controlled grammar, they were effectively able to translate 
from controlled natural language into formal policy. Recently, 
Shi and Chadwick [11] presented their results of an 
application to author access control policies using a CNL. 
While they showed the improved usability of CNL interface, 
they were limited in the complexity of the policies that could 
be created as the interface did not support conditions or 
obligations. Our approach utilizes project artifacts without 
change to the vocabulary or structure of the sentences. 

C. Relation Extraction 
A number of different ways exist to identify semantic 

relations within text. Initial solutions employed hand-written 
patterns to detect hyponym (“is-a”) relationships among words 
[12]. While hand-written patterns usually have high precision, 
they tend to suffer low recall by missing relation occurrences. 
Snow et al. [13] used dependency paths and grammatical 
relationships within a sentence to discover additional 
relationship patterns. Akbik and Broß [14] used a similar 
process to extract a diverse range of sematic relations with the 
goal to extract arbitrary relations for semantic search. 
Dependency parse tree patterns have been used to extracting 
relations between genes and proteins [15]. We utilize 

                                                           
1 http://www.oasis-open.org/committees/xacml 

dependency graphs, but extract the minimum graph pattern 
that overlays the lowest common ancestor of all of the 
included elements of the dependency graph. These elements 
include the subject, action, the relation, and any contextual 
information necessary to disambiguate the necessary 
permissions for the access control policy. As with other works 
[13], we include capability to bootstrap the possible graph 
patterns and a naïve Bayes classifier to judge whether such 
derived patterns should be include in the evaluation set. 

III. ACCESS CONTROL RELATION EXTRACTION 

A. Access Control and Natural Language 
Within natural language texts, access control elements are 

explicitly and implicitly stated. For example, “The system 
shall allow patients to view their own medical records” 
explicitly grants users who are patients the right to read their 
medical records. Other sentences such as “A nurse can order a 
lab procedure for a patient” implies two access control 
policies. First, the nurse has some form of create or write 
permission for lab procedures. Secondly, since the lab 
procedure is for a patient, another access control policy 
implicitly exists to grant the nurse read access to patients. In 
many situations, the verb that typically represents the action 
within the sentence implies the necessary permissions to be 
granted. However, in some cases, the permissions are not 
necessarily so straightforward. As with the second example, 
the verb “order” combined with the prepositional phrase, “for 
the patient”, implies read access to a patient.  

B. ACRE Access Control Policy Representation 
Internally, we represent sentences with a dependency 

graph as depicted in Fig. 1 for the sentence “a nurse can order 
a lab procedure for a patient.” (In the next section, we discuss 
how these graphs are produced.) Each vertex represents a 
word from the sentence along with the word’s part of speech. 
In the figure, “NN” represents a noun, “VB” represents a verb, 
and “MD” represents a modal verb. Edges represent the 
grammatical relationship between two words. For instance, 
“nurse” functions as the nominal subject (nsubj) for “order” 
and “dobj” is the object to be ordered. Dependency graphs can 
be considered trees in most situations and are typically rooted 
by the sentence’s main verb.  

 
Figure 1: ACRE Sentence Representation 

To represent an access control policy, we utilize the 
following pattern, termed an “access control pattern”: 

 ������ ���� �	�� 
��� 

�� ���� �� �� (1) 

� defines the overall access control policy. ��contains an 
order set of vertices that compose the subject of a policy. 
Similarly, � and 	  represent the action and resource, 
respectively. �  contains the vertex representing negativity if 
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required for the policy. If the policy should be limited to a 
particular subject �, 
 contains the indicating vertex. � contains 
any additional vertices required to provide context to given 
action for a set of permissions. � represents the subgraph of a 
sentence’s dependency graph that contains the vertices and 
necessary edges to connect all of the vertices listed in 
�� �� 	� �� 
� �. � represents the permissions typically associated 
with an action. We limit permissions to have the values of 
“create”, “retrieve”, “update”, and “delete” as we are 
primarily concerned with controlling the ability to view and 
manipulate data in systems.  

Situations exist in which not all of the access control 
policy elements may be present within a single sentence. 
These access control policies may be identified with missing 
elements. Developers would be directed to the surrounding 
sentences to finish defining the access control policy.  

C. Access Control Relation Extraction Process 
The ACRE process consists of five primary steps: 

1. Parse text document 
2. Parse natural language 
3. Classify sentence as access control or not 
4. Extract access control elements 
5. Validate access control policies 
 

For input, the process takes any natural language document 
converted into a text only format. For the output, the extracted 
access control policies are listed along with any issues 
discovered for completeness and consistency. To assist 
developers with this process, we have developed a 
corresponding tool to automate most tasks, provide the ability 
for developers to correct classification issues, and to provide 
manual identification of access control policies which the 
process has been unable to find. 

Step 1: Parse Text Document 
The process first reads the entire text into the system. We 

then separate the input into tokens by either new lines or by 
periods at the end of sentences. Next, we apply a concise 
document grammar (Fig. 2) to label each token to a specific 
type: 

• title: Lines which follow capitalization rules for titles. We 
separate them from other lines in our process because 
titles never indicate an access control related requirement. 

• list start: These lines represent the header or description 
of a list that follows. 

• list element: These lines represent individual items 
contained within an ordered or unordered list. These lines 
are combined with the start of the list when sent to the 
parser. Combining the two provides additional context to 
both human analysts and machine classifiers. 

• normal sentence: These lines represent statements that are 
not considered titles, list starts, or list elements. 

Step 2: Process Natural Language 
After identifying the different sentence types, the process 

parses each line (sentence) with the Stanford Natural 
Language Parser (NLP) and outputs a graph in the Stanford 
Type Dependency Representation (STDR) [16]. While the 

parser has several output formats available, we choose the 
STDR because it incorporates the sentence’s syntactic 
information in a concise and usable format.  

To replace shorthand or remove text that the parsing would 
not recognize, the process allows for a series of regular 
expressions to be applied to the text. Specifically in our work, 
we use this mechanism to replace ‘w/’ with ‘with’ and ‘/’ with 
‘or.’ Additionally, As the Stanford Parser processes sentences, 
it tags each word with a part of speech. Due to differences in 
text used to train the parser versus text used by our process, 
the parts of speech may be incorrect. To overcome this issue, 
we inserted a custom method into the parsing pipeline to 
override the part of speech tags if they are incorrect. For 
instance, we discovered that the parser always tagged 
“displays” as a plural noun whereas in most sentences in our 
text “displays” is a verb. Both overrides are configurations 
established at the time the tool starts and are applied without 
user intervention to the entire text.  

Fig. 3 demonstrates the produced STDR for the sentence 
“a nurse can order a lab procedure for a patient.” Each vertex 
contains a word from the sentence along with that word’s part 
of speech. In the figure, “DT” represents a determiner, “MD” 
a modal verb, “NN” a noun, and “VB” indicates a verb. Edges 
represent the grammatical relationship between two words. 
For instance, “nurse” functions as the nominal subject (nsubj) 
for “order” and “dobj” is the object to be ordered. 

From the STDR generated by the parser, we create our 
sentence representation (SR) as ACRE needs to track 
additional attributes for the sentence and for each word. 
Additionally, some words in the original sentence are not 
required for our purposes and, hence, removed from the SR. 

 
Figure 3: Stanford Collapsed Type Dependency Graph 

Fig. 1 shows our corresponding SR for the same sentence 
as in Fig 3. The primary differences between the two graphs 
are the number of vertices and how each word is represented 

document � line 

line � listID title line | title line | sentence line | � 

sentence � normalSentence | listStart (“:” | “-”) listElement 

listElement � listID sentence listElement | � 

listID � listParanID | listDotID | number 

listParanID � “(” id “)” listParanID | id “)” listParanID | � 

listDotID � id “.” listDotID | � 

id � letter | romanNumeral | number 

Figure 2. Document Grammar 
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within a vertex. Within our SR, vertices correspond to words 
in the sentence and contain the word, the word’s lemma, part 
of speech, domain flag, and access control policy indicators. 
The indicators correspond to the subject(“S”), action(“A”), 
resource(“R”) typically defined within an access control tuple. 

Using a pre-order traversal, the process creates the SR 
from the Stanford graph. As each vertex is created, we make 
two changes to the nodes. First, to avoid multiple versions of 
the same word, we use the lemma of the original word. 
Second, to avoid differences in the part of speech, we collapse 
the parts of speeches for all nouns and verbs to their base 
category. For example, we treat all plural nouns and proper 
nouns as just nouns. Similarly, verbs with different tenses are 
treated collectively as a single group. We use a very small stop 
word list to remove common determiners 2  from the SR. 
Additionally, we check if it is feasible to collapse adjective 
and noun modifiers into parent noun nodes. Fig. 1 
demonstrates this collapsing as we combined “lab” and 
“procedure”. By removing extraneous nodes from the SR, we 
reduces the overall size of each graph, which in turn, provides 
fewer irrelevant attributes to a machine learning algorithm and 
provides for more concise patterns to be used in extracting 
access control policies. 

Step 3: Classify Sentence as Access Control or not 
After Step 1 and Step 2 are both completed, a machine-

learning algorithm classifies a sentence as access control or 
not. If the sentence does not express an access control policy, 
we perform no further analysis on it. 

The process uses a combination of a �-NN classifier, naïve 
Bayes, and an SVM classifier. In prior work [17], we found 
that if we used a similarity threshold for the nearest 
neighbor(s) to determine whether or not to provide a 
classification answer, the � -NN classifier ��  performance 
would be 1.0 (no misclassifications), although not all of the 
sentences would be classified. As such, we decide to utilize 
multiple machine learning algorithms to produce the final 
classification result. If the �-NN classifier’s threshold is below 
a certain ratio (0.6) based upon the computed distance to the 
nearest neighbor(s) compared to the length of the sentence, we 
return the �-NN classifier’s answer. Otherwise, we return a 
majority vote of the �-NN, naïve Bayes, and SVM classifiers. 
We term this classifier as “Combined SL.” 

Step 4: Extract Access Control Elements 
Next, we need to extract the subject, action, and resource 

elements from the SR. We utilize a relation extraction 
approach for the identification of access control elements and 
subsequent extraction of the process. The approach follows a 
well-known bootstrapping technique [5], but has been adapted 
specifically for access control policy extraction. 

To initialize the process (presented in Fig. 5), we seed a set 
of ten patterns with each pattern consisting of just three nodes. 
Each pattern is the same, except a different verb3 is utilized for 
“Specific Action”.  The subjects and resources are marked 

                                                           
2 a, an, the  
3 create, retrieve, update, delete, edit, view, modify, enter, choose, 

select 

with wildcards such that the pattern can match any nouns in 
sentences. We initially choose the words “create”, “retrieve”, 
“update”, and “delete” because the words are commonly 
associated with viewing and manipulating data. We then 
examined the frequency of all verbs within the document and 
chose to add six more verbs associated with data and 
appearing with high frequencies within the document. From 
these patterns, we match all occurrences of the subjects and 
resources within the document along with their associate 
frequency counts. From the counts, we computed the mean 
values for the subjects and resources. We then assume any 
word that occurs more than the mean legitimately belongs to 
the application domain. Without a threshold, the potential for 
misidentified subjects and resources is much greater as any 
word matching the pattern would be accepted.  

The subjects and resources are then stored in a listing of 
known subjects and resources. From this listing, we then 
search the document where any subject exists along with any 
resource. For each sentence that does match the condition, we 
extract the dependency pattern between subject and resource 
vertices. We then assume any verbs existing in that pattern are 
the actions. If more than one verb exists in the shortest path 
from the subject to the object, we combine the verbs. In the 
sentence, “the administrator chooses to create a new patient”, 
we combine “choose” and “create” to “choose create” for the 
action. The subject would be “administrator” and the object 
would be “patient”. We derive permissions for each pattern 
based finding the closest synonym in WordNet 4  where 
permissions have already been defined in the process for an 
action. 

Once we have extracted the pattern, we also apply a series 
of transformations to extract additional patterns that may 
locate additional access control policies. Specifically, we 
transform patterns that have an active voice into passive voice 
and vice versa. We also transform the patterns to assume 
conjunctions may exist for two or more subjects, two or more 
actions, and two or more resources. From the pattern set, we 
then search the documents for any sentences matching one or 
more patterns. Once we find any match, we check to see if one 
of the other patterns matches the same sentence. If more than 
one pattern does match and one pattern can be considered a 
“sub-pattern” of another pattern, we discard the “sub-pattern” 
match from the list of results as the other graph has provided a 
more specific match. Additionally, we check the matched 
sentences for any children nodes of the matched pattern that 
imply negativity or subject limitation (i.e., we look to see if 
there is relevant indicator just outside of the match subgraph). 

The extracted access policy is then stored in a list for 
validation and output to the user. Any new subjects or 
resources are then added to the list of known subjects and 
resources. If newly discovered subjects or resources exist, then 
the bootstrapping process can repeat until no new items or 
patterns are discovered. Once the process has stopped, the user 
may manually identify access control patterns. The 
information from these patterns is feed into the process to 
search for additional extracted elements.  

                                                           
4 http://wordnet.princeton.edu/ 
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Figure 5: Access Control Extraction Overview 

Step 5: Validate Access Control 
In this step, the tool checks for coverage and conflicts 

within the extracted access control policies. Coverage is 
reported as measure for each subject as to the number of 
identified resources that it has access control rules identified. 
As we assume a default of no-access, 100% coverage is not 
required. However, low coverage values may indicate a need 
for further access control policies. Conflicts occur within our 
process when a specific subject has been both granted 
permission to a specific resource and restricted for the same 
permission on the same resource. Such conflicts may arise due 
to policy extraction in multiple locations or the use of a limiter 
to restrict access to a specific subject. 

IV. EVALUATION METHODOLOGY 

A. Application: iTrust 
To evaluate the procedure, we used iTrust as our test 

system. The requirements consist of 40 use cases plus 
additional non-functional requirements, constraints, and a 
glossary. The version we used contained 1159 sentences with 
409 (36.7%) of those sentences determined to contain one or 
more access control policies. 

B. Study Oracle 
First we created our oracle in which we manually 

classified each statement in the iTrust Requirements 
Specification. We first converted the document into a text-
only format. Next, we opened the document in the ACRE Tool 
to classify each sentence. The first authors classified the 1,159 
sentences (or lines) in seven hours.  

After the initial classification was completed, we validated 
the classification through several approaches. First, we used a 
k-medoids clustering algorithm to compute clusters of related 
sentences. We then compared the classifications within each 
cluster. and investigated further those sentences that did not 
have the same classification as other sentences in the group. 
Additionally, as we classified each sentence, we had access to 
the neighbors contained within the k-NN classifier. This 
approach allowed for more rapid manual classification by 
suggesting initial classification that we could then verify or 
correct as deemed necessary. Additionally, any discrepancies 
in the predicted classification could be easily traced back to 
the source sentences.  

Next, the first author spent twelve hours to manually 
identify the subjects, actions, and resources for the access 
control policies in the 409 sentences.  

C. Study Procedure 
Once the oracle has been created, we executed five 

classifiers (the � -NN classifier, a TF-IDF classifier, the 
“Combined SL” classifier, a multinomial naïve Bayes 
classifier and a SVM - sequential minimal optimization 
classifier) on the requirements document. For each classifier 
considered, we tested using a stratified n-fold cross-validation 
and computed the precision, recall, and ���measure. We follow 
Han et al.’s recommendation [18] and use 10 as the value for n 
as this produces relatively low bias and variance. The cross-
validation ensures that all sentences are used for training and 
that each sentence is tested just once.  

In the final phase of the study, we examined seeding the 
process with different sets of initial actions (verbs). From the 
patterns generated, we extracted the access control policies 
from the requirements document and compared the extracted 
to the manually identified policies. 

V. EXPIREMENTAL RESULTS 
RQ1: How effectively can we identify access control 
policies in natural language text in terms of precision and 
recall? 

Table 1 presents the results of executing each classifier against 
the entire document set using a ten-fold cross validation. We 
executed each test three times and present the average. 

Table 1. Stratified Ten-Fold Cross Validation 

Classifier Precision Recall �� Measure 

Naïve Bayes .743 .940 .830 
SMO .845 .830 .837 
TF-IDF .588 .995 .739 
k-NN (k=1) .851 .830 .840 
Combined SL .873 .908 .890 

Creating the “Combined SL” classifier did produce some 
performance gains from using individual classifiers as the �� 
Measure was .05 higher than the next best performer (k-NN, 
k=1). For the k-NN classifier, we did experiment with various 
values for k and found one produced the best performance. 

RQ2: What common patterns exist in sentences expressing 
access control policies? 

By examining the most frequently occurring patterns from our 
manual identification, we found that the seed pattern occurred 
in 25% of the sentences marked for access control. This 
occurrence doesn’t require a small sentence, but rather 
somewhere in the sentence we found three nodes and two 
edges of that pattern. Another frequently occurring pattern 
(8%) occurs with sentences start with “The subject 
[chooses|selects] to perform action.” A wide range of patterns 
existed due to differences in prepositions represented on edges. 

RQ3: What is an appropriate set of seeded graphs to effectively 
bootstrap the process to extract the access control elements? 
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To evaluate this question, we started the process with different 
sets of base words and then compared the quantity of patterns 
generated and the performance of those patterns to extract the 
correct access control statements from the sentence. The best 
performance came with the set of 10 action verbs defined for 
the seed with a precision of .463 and a recall of .536. 

VI. LIMITATIONS 
Several limitations exist within this work. As ACRE 

utilizes NLP techniques, the process and associated tool cannot 
extract information contained in images. With regards to access 
control policies, our bootstrapping approach does not take into 
account the presence of contextual information or conditions 
that may affect the generated access control. The user can 
manually enter such information, though. We also assume all 
necessary information for an access control policy is contained 
within the same sentence. It is feasible for elements either to 
exist in surrounding sentences. We also have not handled 
resolution issues at this time. These issues occur when a 
pronoun or generic term such as “system” or “data” is used in 
place of a descriptive term. Our work has a significant external 
validity threat as we examined only one document for one 
system in a specific problem domain. While the process does 
not have any specific problem domain constraints, additional 
evaluation needs to occur across multiple domains and 
applications.  

An internal validity threat may exist as the first author 
performed all of the sentence classifications and access control 
policies. To check the accuracy of the first author’s 
classifications, we had five software developers classify a 
representative sample of 30 sentences. Utilizing Randolph’s 
Online Kappa Calculator [19], we calculate a free-marginal 
kappa of 0.86 (indicating significant inter-rater agreement) by 
comparing the first authors classification against the majority 
vote of the other raters. 

VII. CONCLUSION AND FUTURE WORK 
For future work, we plan to continue work on the tool to 

resolve the resolution issues presented in the previous section. 
We also plan to develop a much larger corpus of text 
documents for multiple systems in two or three domains. 
Utilizing the corpus, we can more effectively measure how the 
process performs and would generalize to other systems and 
problem domains. 

In this paper, we present a new process, ACRE, and tool 
that assist developers in automatically extracting access control 
policies from natural language text. The tool provides a 
mechanism for developers to quickly generate an initial set of 
access control policies with traceability back to the originating 
set. Developers can utilize the process to detect conflicts in 
generated policies as well as evaluate the coverage of 
generated policies to the identified subjects and resources. We 
demonstrated how effective a bootstrapping process can extract 
policies from a very small initial set of patterns. We also 
presented a grammar that can be applied when parsing text 
documents to provide additional context information for 
specific elements within the document. 

As we utilized a cross-fold validation on a single document, 
our combined classifier showed very effective performance 
with a ��  Measure of .89. We also showed improved 
performance through combine the results of multiple 
classifiers. However, our performance in extracting access 
control patterns was substantially less with a precision of .463 
and a recall of .536. 
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