
DIGS – A Framework for Discovering Goals for Security
Requirements Engineering

Maria Riaz, Jonathan Stallings, Munindar P. Singh, John Slankas, Laurie Williams
Department of Computer Science

Department of Statistics
North Carolina State University
Raleigh, North Carolina, USA

[mriaz, jwstalli, singh, john.slankas, laurie_williams]@ncsu.edu

ABSTRACT

Context: The security goals of a software system provide a

foundation for security requirements engineering. Identifying

security goals is a process of iteration and refinement, leveraging

the knowledge and expertise of the analyst to secure not only the

core functionality but the security mechanisms as well. Moreover,

a comprehensive security plan should include goals for not only

preventing a breach, but also for detecting and appropriately

responding in case a breach does occur. Goal: The objective of this

research is to support analysts in security requirements engineering

by providing a framework that supports a systematic and

comprehensive discovery of security goals for a software system.

Method: We develop a framework, Discovering Goals for Security

(DIGS), that models the key entities in information security,

including assets and security goals. We systematically develop a set

of security goal patterns that capture multiple dimensions of

security for assets. DIGS explicitly captures the relations and

assumptions that underlie security goals to elicit implied goals. We

map the goal patterns to NIST controls to help in operationalizing

the goals. We evaluate DIGS via a controlled experiment where 28

participants analyzed systems from mobile banking and human

resource management domains. Results: Participants considered

security goals commensurate to the knowledge available to them.

Although the overall recall was low given the empirical constraints,

participants using DIGS identified more implied goals and felt

more confident in completing the task. Conclusion: Explicitly

providing the additional knowledge for the identification of implied

security goals significantly increased the chances of discovering

such goals, thereby improving coverage of stakeholder security

requirements, even if they are unstated.

CCS Concepts

• Security and privacy➝Software and application security

Keywords

Security goals; security requirements; controlled experiment.

1. INTRODUCTION
Whereas the majority of software is built for functions other than

providing security solutions, almost all software systems require

security-related functionality built into the system [13]. Errors in

the identification of security requirements can lead to serious

security concerns for the software system that impact core

functionality, leading to loss of reputation, financial penalties, and

even legal prosecution. According to Walia and Carver’s

classification of requirements errors [24], lack of adequate

knowledge or expertise is one of the most commonly identified

reasons for requirements errors. Moreover, omissions in

requirements is the most commonly occurring requirements error

[1]. Given that security expertise is limited and minimal resources

are available for eliciting security requirements, security

requirements are even more likely than other types of requirements

to be left unspecified or inadequately specified [19].

Security goals provide a frame of reference for security

requirements, not only capturing the rationale for the requirements,

but also helping us assess the completeness of requirements [2].

Identifying security goals for a system is one of the initial steps

during security requirements engineering [14]. The challenge is not

only to identify an initial set of security goals for the system but

also to identify any additional security goals that are implied based

on the initially identified set of goals. For instance, to prevent a

confidentiality breach of assets such as personal information, we

need to ensure confidentiality and integrity of an authentication

mechanism. Similarly, we might create new assets, such as audit

records to keep track of authentication attempts, and should protect

the integrity of the newly created audit log asset itself. These

implied goals ought to be considered during security analysis to

secure not only the core functionality but also the security

mechanisms themselves [3]. Moreover, a comprehensive security

plan should include goals not only for preventing a security breach,

but also for detecting and appropriately responding in case a breach

does occur. Systemizing the discovery of security goals is

important for a system's security and for minimizing omitted

requirements and unstated assumptions.

The objective of this research is to support analysts in security

requirements engineering by providing a framework that supports

a systematic and comprehensive discovery of security goals for a

software system.

We have developed DIGS, a framework for systematically

Discovering Goals for Security. The functional requirements and a

list of the assets of a software system are input to the DIGS

framework, and security goals associated with the initial, or any

additionally identified, assets are its output. DIGS helps an analyst

in systematic discovery of a system’s security goals, such as goals

related to confidentiality or accountability of assets, for different

security actions (i.e., preventing, detecting, or responding to a

breach) by codifying the pertinent knowledge as a set of security

goal patterns. We explicitly capture relationships among goals and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

ESEM’16, Sep 05–09, 2016, Ciudad Real, Spain.

Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

assumptions associated with goals to elicit implied security goals

that should be considered based on the initially identified goals.

When using DIGS, an analyst makes a conscious choice to select

or not select a security goal pattern for an asset, which can be

reasoned about and documented, minimizing errors of omission.

Analysts may also revisit and identify goals not considered in an

earlier analysis. DIGS supports discovery of security goals and

helps organize security goals related to the assets. This organization

helps in quickly identifying areas where goals have not been

specified and that may need additional security fortification.

Moreover, we map the security goal patterns to candidate security

mechanisms that can also help in operationalizing the goals.

We evaluate DIGS in identifying implied security goals via a

controlled experiment involving the analysis of two real-world

systems. Our research contributes the following:

 The DIGS framework for systematically discovering security
goals;

 An empirical evaluation of DIGS in a controlled setting; and

 A mapping of security goal patterns to applicable NIST Special

Publication 800-531 security controls for operationalizing the
goals.

This paper is organized as follows: Section 2 presents background

and related work. Section 3 discusses the elements of DIGS

framework, security goals patterns and implied security goals.

Section 4 outlines the evaluation methodology for DIGS followed

by results in Section 5. Section 6 provides discussion and lessons

learned based on our findings. Section 7 concludes the paper.

2. BACKGROUND AND RELATED WORK
Existing approaches for security requirements engineering (SRE)

largely focus on either modeling the security requirements or

documenting the process of eliciting security requirements. For

modeling security requirements, researchers have proposed goal-

based approaches [4] that model an attacker's perspective, for

instance, by construction of anti-models [11] and misuse cases [21].

In terms of processes, methodologies such as SQUARE [14]

document various steps involved in security requirements

engineering and provide guidelines for each step. The success of

existing SRE approaches varies based on the skill, knowledge, and

experience of the analysts. A comprehensive analysis of security

requirements, starting from scratch, is time and resource

consuming. A recent case study, documenting the use of SQUARE

methodology in SRE, reported an effort of around 12 person-weeks

for applying the methodology, with 3 person-days for identifying

security goals [23].

Recent efforts have focused on reusing the knowledge of security

requirements and automating parts of the SRE process.

Organizational learning [10] automatically identifies security

requirements in existing requirements artifacts for reuse in similar

projects. In addition to explicitly stated requirements, Security

Discoverer [17], identifies implied security requirements using

supervised machine learning and automatically suggests applicable

security requirements templates.

Security patterns capture security knowledge and provide reusable

solutions to recurring security problems. Schumacher et al. [20]

have documented a number of security patterns including patterns

for secure design and architecture as well as security requirements.

Yurina Ito et al. [8] have identified a need to investigate the use of

1http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.80

0-53r4.pdf

security patterns in early phases of software development including

analysis and requirements. Slavin et al. have developed an approach

using inquiry-cycle model to select appropriate security

requirements patterns [22]. Security requirement patterns available

in literature cover only a small subset of security requirements,

specifically related to access control, audit and some aspects of

privacy [19]. The role of various security patterns in problem

solving has not been empirically evaluated [16]. Moreover, the

patterns cover only prevention and detection related requirements.

We provide a framework to systematically identify a

comprehensive set of security goal patterns and implied goals

during the initial phases of SRE to strengthen the consequent

security requirements. We also organize existing knowledge

sources related to security requirements in terms of our goal

patterns to support an analyst in navigating through the available

information for operationalizing the goals. Moreover, we use

empirical software engineering guidelines and practices to evaluate

our framework.

3. DIGS FRAMEWORK
A conceptual framework for systematically identifying security

goals can assist analysts in considering a comprehensive set of

applicable goals and making conscious tradeoffs. We present the

DIGS framework in this section.

3.1 Elements of DIGS
We now describe the elements of DIGS in detail.

3.1.1 Assets
DIGS accepts as input a list of assets used and controlled by the

software system, along with the functional requirements. The assets

of the software system are its sensitive resources and services, such

as patient’s health record, that need to be protected. Assets can be

mutually related, for instance, one asset can be composed of other

assets. Assets can be ranked in terms of their security risks. The

security risk of an asset is related both to how valuable an asset is

and how easily the asset can be attacked. Relative security risks for

assets can be computed using existing techniques, such as

protection poker [25]. In certain domains, such as military and

healthcare, assets are assigned to predefined classes, mostly

concerning with different levels of confidentiality and privacy

associated with the asset. We do not assume any specific

classification for the assets, and ranking assets by security risks is

optional. However, if the ranking is available, it can guide the

selection of appropriate security mechanisms for operationalizing

the goals.

3.1.2 Actions
For each information asset, we have identified a list of action

categories that can be permitted or prohibited. We can either

explicitly specify prohibited actions, or use the closed-world

assumption where any action that is not explicitly permitted on an

asset is prohibited. In addition to the standard CRUD (create, read,

update, delete) actions, we add two additional action categories:

(1) storage; and (2) transfer of information, based on our previous

analysis of over 11,000 requirements sentences [17]:

 store: actions related to storage and backup of the assets at rest,

e.g., backing up log files.

 transfer: actions related to transfer or sharing of the assets, e.g.,
sending patient health record from one service to another.

These actions help us consider security of assets starting from the

creation of an asset, through usage, storage, or transfer of assets, till

the asset expires.

3.1.3 Security Properties
We model the security goals of a system in terms of the assets that

need to be protected and the security properties we want to have for

the assets. For instance, a security goal can be to ensure

‘confidentiality of a patient record’ where ‘confidentiality’ is the

property and ‘patient record’ is the asset. We have identified the

following six core categories of security properties [17]. Each

security property counters a specific threat in the Microsoft

STRIDE2 threat model.

 Confidentiality (C)

o counters threat of Information Disclosure

 Integrity (I)

o counters threat of Tampering

o counters threat of Elevation of Privileges

 Availability (A)

o counters threat of Denial of Service

 Identification & Authentication (ID)

o counters threat of Spoofing

o counters threat of Elevation of Privileges

 Accountability (AY)

o counters threat of Repudiation

 Privacy (PR)

o counters threat of Information Disclosure

The actions on the various assets suggest applicable security

properties.

 Confidentiality is important when performing ‘read’, ‘store’

and ‘transfer’ actions.

 Integrity is important when performing ‘create, update, delete’

and ‘transfer’ actions.

 Availability is important when performing all six action types.

For 'Availability', the asset will be a service or a system

functionality.

 Identification & Authentication is important when a system is

accessed, prior to performing any of the six action types. If

some actions are allowed without authentication, they should

be explicitly specified.

 Accountability is important when performing any of the six

action types.

 Privacy is important if the owner of information can exercise

control over who can access the information during the actions

‘read’, ‘store’, and ‘transfer’.

3.1.4 Security Actions
Proactively preventing a security breach is the ideal scenario.

However, security breaches do occur. In case of a breach, we can

know that a breach has occurred and take remedial actions only if

the goals related to detecting and responding to a breach have been

incorporated in the system [12]. Consider the security goal to

ensure the confidentiality of a patient’s health record. In case of a

security breach, we should detect and respond to the breach as well.

The goal of confidentiality of patient’s health record can thus be

refined into three goals: prevent breach of confidentiality; detect

any breach of confidentiality; and respond to each breach of

confidentiality. We define the following three main security

actions:

 Prevent (p): proactively prevent a security breach [20].

2 https://msdn.microsoft.com/en-us/magazine/cc163519.aspx

 Detect (d): in case of a security breach, detect the breach [20].

 Respond (r): in case of a security breach, respond to the

detected breach [20][5].

Considering each of these security actions during requirements

engineering can help in discovering a more comprehensive set of

security goals. Moreover, in certain exceptional situations, we may

allow access to assets, such as ‘patient health record’, and later

reason about and detect if the access was in accordance with the

privacy guidelines or whether a breach has occurred.

3.1.5 Security Mechanisms
A security mechanism is a method, tool, procedure, or control put

in place for operationalizing one or more security goals. Different

mechanisms may be selected to support a security goal depending

on the security action and asset’s risk assessment. For instance,

access control and encryption are two security mechanisms that

support preventing a breach of confidentiality, whereas auditing

mechanisms support the detection of a security breach. Similarly,

for high-risk assets, we may employ additional mechanisms than

for low-risk assets. NIST Special Publication 800-53, specifies a

list of security and privacy controls for information systems. NIST

categorizes controls in terms of different families such as access

control (AC), audit and accountability (AU), identification and

authentication (IA), media protection (MP). NIST also provides

information about priority and usage of control based on the impact

of a security breach. We have additionally mapped NIST controls

to the security goals (i.e., the security properties and security

actions that the control supports). For instance, in the IA-family of

NIST controls, IA-2, IA-3, and IA-9 map to preventing a breach of

identification and authentication of actors (users, devices and

services respectively). Controls IA-5 and IA-6 map to the implied

goals (see Section 3.3) of preventing breaches of confidentiality

and integrity of the authentication mechanism itself. Controls IA-

10 and IA-11 map to both preventing as well as responding to a

breach of authentication mechanism. The complete mapping is

available on our project website3 and provides guidance toward

applicable controls based on the identified security goals. We have

also developed security requirements patterns based on NIST

controls by abstracting and grouping related controls that support

the same security goals3.

3.2 Security Goal Patterns
To support the analysis of security of assets across multiple

dimension, we have identified 18 patterns of security goals that

cover all combinations of the 6 security properties and 3 security

actions discussed earlier. In Table 1, we summarize the goal

patterns and list the actions that indicate when different security

properties should be considered for specifying security goals. For

example, <read | store | transfer> type actions indicate a need for

Confidentiality. To abbreviate, each pattern is assigned an identifier

as: <p | d | r>-<C | I | A | ID | AY | PR>,

e.g., d-PR means ‘detect a breach of Privacy’.

 We can specify security goals for key system assets using the

security goal patterns. The actions performed on the assets guide

the choice of the applicable security properties. For instance, while

reading the asset ‘patient health record’, we consider security

properties of confidentiality, accountability, and privacy of health

records as well as availability of system functionality to allow the

read action. For each security property, we also consider goals

related to all three security actions. We provide a subset of security

goals that are identified for a patient’s health record in Figure 1.

3 https://sites.google.com/site/digsstudy/

Goal A corresponds with preventing a breach of confidentiality. We

can select appropriate security mechanisms, such as NIST control

AC-3 for access enforcement, to operationalize this goal. Goal B is

related to detecting a breach of privacy. We can use control AU-12

related to audit generation, to operationalize the goal. Goal C is

related to responding to a breach of accountability for all types of

actions listed in Section 3.1.2. Security goals shown in Figure 1 are

generated using the security goal patterns as follows:

 Goal A: prevent a breach of Confidentiality of patient

health record when user reads the data (i.e., p-C)

 Goal B: detect a breach of Privacy of patient health record

when user reads the data (i.e., d-PR)

 Goal C: respond to a breach of Accountability of patient

health record (i.e., r-AY)

Figure 1. Security goals for ‘patient health record’.

Information about the relative security risk of assets may also guide

the selection of security mechanisms. To reduce complexity during

analysis, we can group the assets that have the same security goals,

risks, and mechanisms.

3.3 Implied Security Goals
Based on the initial set of security goals that are identified, other

security goals might be applicable. For instance, we might create

new assets (e.g., audit records in Figure 1) or incorporate new

functionality in the system (e.g., access enforcement mechanisms

in Figure 1) to meet the initially identified goals. Security of these

new assets or functionality is implied for the overall security of the

system. As an example, two security goals that are implied for the

security of audit records are to prevent a breach of confidentiality

and integrity of the audit records (Goals D and E), as shown in

Figure 2.

Figure 2. Implied security goals for ‘audit records’.

For each of the initial goal patterns, we explicitly capture the

implied goals to consider. For instance, to prevent a breach of

confidentiality of assets, an implied goal is the integrity of access

enforcement mechanisms. Similarly, to detect a breach of

confidentiality of assets, an implied goal is the integrity of audit

records. To respond to a breach of confidentiality of assets, an

implied goal is to have mechanisms in place to temporarily limit

system availability. A list of implied goals related to preventing a

breach is given in Table 2. A complete list is available online.

Moreover, we specify when an implied goal indicates the need for

new assets or security-related functionality to be added to the

system. For instance, access enforcement mechanisms may employ

login credentials, result in the creation of encrypted assets, or in the

creation of security-related metadata (e.g., access control lists,

security attributes). We can iteratively apply the 18 goal patterns

for any newly created assets to have a comprehensive analysis of

the security of system’s assets.

3.4 Steps for Applying DIGS
The functional requirements and assets of a software system are

input to the DIGS framework and security goals associated with the

initial, or additionally identified, assets are the output.

To apply DIGS for identifying security goals, repeat until all (initial

and additional) assets are considered:

Step 1: Use security goal patterns to identify an initial (or added)
set of security goals.

a. Identify goals related to various security properties
based on the actions that are performed on the assets.

b. Identify goals related to different security actions,
factoring in the asset’s risk information, if available.

 Table 1. Security goal patterns

Step 2: Identify implied security goals based on the goals.

a. Add implied goals for each selected goal pattern to the
set of goals, if applicable.

b. Identify any new functionality that might be added to
the system based on 2-a.

c. Identify any new assets that might be created in the

system based on 2-a and 2-b.

Consider the asset ‘health record’. In Step 1, we identify all

applicable security goal patterns for ‘health record’ and move to

Step 2. In Step 2-a, we will look at the rows corresponding to all

goal patterns selected in Step 1. For instance, for p-C (prevent a

breach of confidentiality), we identify goal for availability of access

enforcement mechanism in Step 2-a. Here, ‘access enforcement

mechanism’ is the new functionality identified in Step 2-b.

Similarly, ‘login credentials’ might be a potentially new type of

asset related to access enforcement mechanism identified in Step 2-

c. After identifying all the implied goals in this way, we go back to

Step1 to identify additional goals for the new assets. For ‘access

enforcement mechanism’, we already identified goal for integrity

and now consider the remaining patterns to have a comprehensive

analysis. The process will come to an end when no new functionality

or asset is identified in Step 2-b and Step 2-c. In general, we expect

the analyst to iterate through the steps no more than 2-3 times before

saturation. Selecting all goal patterns or implied goals may not be

feasible. Our objective is that an analyst be able to consider these

goals and make conscious tradeoffs about including the respective

security goals.

In addition to the discovery of security goals, DIGS supports the

organization of the security goals by assets, security properties, and

security actions. This organization helps in quickly assessing areas

where goals have not been specified and that may need additional

security fortification. Analysts may revisit and identify goals not

considered in an earlier analysis. In this regard, DIGS may also be

used for identifying potentially missing security requirements by

mapping existing requirements to DIGS security goal patterns.

4. EVALUATION METHODOLOGY
We conducted a controlled user experiment to evaluate the DIGS

framework. We now report our methodology for conducting the

experiment, as adopted from Jedlitschka et al [9]. The artifacts used

during the study include training material given prior to the study,

4 https://sites.google.com/site/digsstudy/

reference material available during the study, and the forms to

submit the task responses. The experiment artifacts and task details

are available online4.

4.1 Goals, Hypotheses, and Metrics
We conducted this experiment to evaluate whether DIGS supports

the systematic and thorough discovery of security goals for a

system. We analyze the initial set of security goals that participants

identify using the 18 security goal patterns as well as any implied

security goals identified based on the initial security goals. We did

not control for knowledge of security goal patterns (Section 3.2) as

both control and treatment groups were already familiarized with

these security goal patterns.

The factors of interest that we controlled for are:

 Support of a systematic process for identifying the security

goals using the DIGS framework (Section 3.4).

 Explicit knowledge of implied security goals (Section 3.3).

We explore the following null hypotheses:

H01: Support of a systematic process does not impact a participant’s

ability to identify different types of security goals using

security goal patterns.

H02: Explicit knowledge about implied security goals does not

impact a participant’s ability to identify such goals.

In Table 3, we list the metrics used for testing each hypothesis.

Hypothesis H01 considers differences due to the systematic process

used by treatment group given the same knowledge about security

goal patterns as control. We test H01 using the metrics of precision

and recall of the identified security goals. Additionally, we consider

recall of security goals related to each security action to see if

differences were consistent across the security actions.

Hypothesis H02 is based on the differences due to the knowledge of

implied goals available to treatment group. We test H02 by

evaluating the recall of security goals identified initially versus the

recall of implied goals identified from the discovered initial goals.

Table 2. Implied security goals for goal patterns related to preventing a breach

Table 3. Metrics used for evaluation

H01

Precision of security goals identified by individual

participants. [TP / (TP + FP)]

Recall of security goals identified by individual

participants. [TP / (TP + FN)]

Recall of security goals identified by individual

participants, grouped by security actions (i.e.,

prevention, detection, response).

H02

Recall of security goals identified by individual

participants, grouped by discovery phases

(i.e., initial or implied).

We compute the metrics for each participant’s response based on

an oracle of security goals (see Section 4.5) developed a priori to

the evaluation. For each response, we count goals as follows:

 True Positive (TP): A security goal identified by participant

that is in the oracle.

 False Positive (FP): A security goal identified by participant

that is not in the oracle.

 True Negative (TN): A security goal not identified by

participant that is not in the oracle.

 False Negative (FN): A security goal not identified by the

participant that is in the oracle.

4.2 Participants
Our study participants were graduate students enrolled in a 16-

week Computer and Network Security graduate course (CSC 574,

Spring 2016) offered at NCSU. All the students received

coursework credit for completing the task, similar to other class

exercises. However, students could opt out of participating in the

study5, which would preclude the inclusion of their work in the

study results. Of the 29 students present for the lecture, 28 gave

consent to participate in the study. We assigned participants to

treatment and control groups based on a pre-task quiz (Section 4.3).

Each group had 14 participants.

Each participant was assigned a unique random access code to use

throughout the tasks so we can link participants’ responses across

all the tasks they performed. However, we recorded no personally

identifiable information about the participants. At the end of the

task, participants filled out a post-task questionnaire to document

their academic and work experience in computer science and

security. Participants in both groups had an average of five years’

experience in computer science. Participants had around one year

of academic experience related to computer security, on average.

4.3 Experimental Design
The study consisted of three parts: a pre-task quiz, the main task,

and a post-task questionnaire.

Pre-task quiz contained 15 multiple choice questions to assess the

background knowledge of participants related to security goals

based on the provided training material. Participants had 10

minutes to complete the quiz. Once the participants submitted the

pre-task quiz (via a Google form), we automatically evaluated the

responses. We assigned the responses into three terciles. We

randomly assigned half of the participants from each tercile to the

treatment and half to the control groups. The average pretask quiz

scores for the control and treatment groups were 12.2 and 11.6,

5 The study was approved by the NCSU IRB (6548) and HRPO.

6 http://www.ihris.org/ihris-suite/health-workforce-software/ihris-

manage/

respectively, out of 15 points. As a result, we assume that neither

group was inherently better at identifying security goals prior to the

experiment.

Main task consisted of identifying security goals for two software

systems given the system description and key assets, analyzing both

systems in randomized order. For the main task, we provided a

high-level description of a subset of features for the following two

systems to each participant for analysis:

 iHRIS Manage6 supports the Ministry of Health and other

service delivery organizations to track, manage, deploy, and

map the health workforce.

 Cyclos, SMS banking module7, part of a secure and scalable

payment software.

We selected these software systems as they manage diverse sets of

assets. Operations on these assets cover all action types and require

consideration for different security goals, thus allowing for a

detailed analysis of the DIGS framework. Moreover, a description

of key system features is also available online.

Each participant analyzed both systems, in random order, to

identify security goals for each system. Both groups already had

knowledge of security goal patterns, as presented in Table 1.

Additionally, participants in the treatment group had knowledge of

implied security goals based on the initial goals. All of the

participants were asked to identify the security goals for the system.

Participants in both the treatment and control groups were

encouraged that once they have identified an initial set of security

goals, they should try to identify any implied goals based on the

discovered initial goals. Differences between the groups, in terms

of available knowledge, are summarized in Table 4.

Participants were given 50 minutes to complete both tasks and

allocated as much of the time as they wanted for each system.

Treatment group participants additionally had to allocate time to

understand the systematic process and implied goals given as part

of reference material during that time. One participant, in the

control group, only provided responses for Cyclos. All other

participants analyzed both systems.

Table 4. Differences between Control and Treatment

 Control Treatment

Knowledge
Security goal patterns

(Section 3.2)

Security goal patterns

(Section 3.2) +

Implied security

goals (Section 3.3)

Process
No specific

methodology

Methodology

outlined for applying

DIGS (Section 3.4)

Post-task questionnaire, given at the conclusion of the main task,

consisted of questions related to background experience of

participants, as well as self-assessment on whether the tasks and

methodology to complete the tasks were clear. The purpose of the

latter is to determine whether students in the treatment group were

able to understand the instructions given to them. This information

could potentially explain the evidence or lack of statistical

differences between the two task groups. For example, results may

indicate no differences between the task groups because the

treatment group did not understand the instructions.

7 http://www.cyclos.org/mobilebanking/

4.4 Experimental Analysis Methodology
The experimental design followed that of an analysis of variance

(ANOVA) of a split-plot design [15] where the whole-plot factor

was the task group (control or treatment) and the split-plot factor

was the system (iHRIS and Cyclos). We used the restricted

maximum likelihood (REML) procedure [6] to fit the statistical

model:

𝑦𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝑒(𝑊)𝑖𝑗 + 𝛽𝑘 + (𝛼𝛽)𝑖𝑘 + 𝑒(𝑆)𝑖𝑗𝑘

where 𝑦𝑖𝑗𝑘 is the response of interest, 𝜇 represents the grand mean,

𝛼𝑖 represents the effect of the i-th task group, 𝛽𝑘 represents the

effect of the k-th system, (𝛼𝛽)𝑖𝑘 represents the interaction effect

between the task and system group, 𝑒(𝑊)𝑖𝑗 represents the whole-

plot error, and 𝑒(𝑆)𝑖𝑗𝑘 represents the split-plot error. Both error

terms are independent, normally distributed random variables with

zero mean and variances of 𝜎𝑊
2 and 𝜎𝑆

2, respectively, and are

mutually independent. Testing for task group differences had fewer

residual degrees-of-freedom and so had less power than testing for

system differences or task-system interactions. The effect size of

any significant differences involving the task groups was further

investigated using pairwise differences. All analyses were

performed in JMP Pro 128.

4.5 Oracle of Security Goals
Prior to the evaluation, two of the authors created an oracle of all

identifiable security goals for each asset in both the systems used

in the study (iHRIS and Cyclos). The researchers involved in the

creation of the oracle have 5 and 15 years of relevant experience.

As a first step, both researchers individually voted ‘YES’ or ‘NO’

for each security goal that can be assigned to an asset based on the

18 patterns. The researchers had substantial agreement at the end

of the individual voting based on the Cohen’s Kappa score (0.754

for iHRIS; 0.87 for Cyclos; 0.814 overall). The 22 disagreements,

out of 252 possible votes, were resolved with discussion. The end

result was a consolidated oracle, where any goal voted ‘YES’ by

either of the researchers was included in the oracle. The iHRIS and

Cyclos systems had 144 and 108 total possible security goals,

respectively, of which 108 and 61 were applicable to the system

(voted ‘YES’). Given the large number of goals in the oracle for the

allocated time (almost 3-4 goals to identify per minute), we do not

expect to see high recall values. Each goal in the oracle was

categorized as follows:

 Security action: a) prevention; b) detection; or c) response.

 Discovery phase: a) identified based on the initial analysis of

system assets using goal patterns (Initial goals); or b)

identified based on initial goals (Implied goals).

When analyzing participants’ responses, we examined whether

different categories of goals were identified by the participants,

blind to the group each participant belonged to. During the analysis,

we did not find any goal not in the oracle already.

5. RESULTS
We evaluated the participants’ responses in terms of the metrics

listed in Section 4.1 and present the results in this section.

5.1 H01: Security Goal Patterns
As shown in Table 4, both the control and the treatment groups had

knowledge of the security goal patterns. We wanted to evaluate if

8 http://www.jmp.com/en_us/software/jmp-pro.html

both groups can identify security goals based on the provided goal

patterns with or without the DIGS process.

We begin by investigating any significant differences based on the

metrics of precision and recall of security goals between control

and treatment using the ANOVA test (Section 4.4). All tests have a

numerator degree-of-freedom of 1 and denominator degrees-of-

freedom of approximately 26, based on the Kenward-Roger

method, which is the default for JMP. Figure 3 shows plots of the

means and standard errors of the responses by task group and

system. An increasing slope in the lines indicates superior

performance by the treatment group. In nearly all cases, we see the

treatment means are higher than the control means. However, the

standard errors are large.

Figure 3. Means and standard errors of Precision and

Recall by Task Group and System.

The differences between the performance of the treatment and

control groups are not statistically significant, however, as shown

in Table 5. On average, both groups had high precision (control:

0.88; treatment: 0.9) but low recall (control: 0.18; treatment; 0.21)

since participants are more likely to have false negatives than false

positives. Low recall can be explained by a number of factors

including the limited time and resources available to participants,

and the fact that missing a security goal would have no real

consequences for the participants in an empirical setting.

Participants spent between 15 and 19 minutes on each system on

average identifying around 1 security goal per minute on average

(control: 0.89; treatment: 1.24). The time spent on identifying

security goals would likely be significantly greater in real life

where the stakes are much higher. It is also likely that in practice a

team of analysts and stakeholders would identify the system’s

security goals rather than an individual (see Section 5.3).

Table 5. Analysis of variance for Precision and Recall.

 Precision Recall

Effect F-value P-value F-value P-value

Task 0.314 0.580 0.168 0.685

System 0.329 0.571 0.579 0.454

Task*

System
0.000 0.989 0.045 0.834

Next, we analyzed the recall of security goals for each of the three

security actions to see if participants considered different goal

patterns. The analysis of standardized responses for the correctly

identified prevention, detection, and response security goals

revealed no significant differences between either the task groups

or systems. Moreover, we did not find a significant difference in

the recall values for goals related to each security action in either

group. Figure 4 and Table 6 show the results.

Figure 4. Means and standard errors of standardized

responses for the correctly identified (a) Prevention, (b)

Detection, and (c) Response security goals.

We fail to reject the null hypothesis H01. Our data indicate that the

knowledge captured in the form of security goal patterns is equally

accessible to participants in both groups, with or without a

systematic process.

We did not manipulate the knowledge of security goal patterns

between the treatment and control groups in the current experiment.

However, we would expect to see more pronounced differences in

recall between the groups if control group did not have the

knowledge of security goals patterns [18]. Moreover, considering

the security actions for which requirements have been identified in

previous experiments [18], we conjecture that knowledge of

security goal patterns helped all participants to consider goals

related to different security actions. Specifically, current

participants in both groups considered goals related to responding

to security breaches, which was not considered by participants in

previous experiments.

Table 6. Analysis of variance for standardized responses

for the correctly identified Prevention, Detection, and

Response security goals.

 Prevention Detection Response

Effect F-val P-val F-val P-val F-val P-val

Task 0.659 0.424 0.094 0.762 0.100 0.754

System 0.097 0.759 0.002 0.963 2.848 0.104

Task*

System
0.389 0.538 0.850 0.365 0.000 0.990

We analyzed qualitative feedback from participants to see if the

treatment and control groups had different perceptions about the

task. In the treatment group, 11 of the 14 participants had a positive

sentiment about performing the task while 3 participants felt

unsure. In contrast, only 4 participants in the control group had a

positive sentiment about performing the task, 6 felt unsure and 4

did not respond. Our results indicate that the treatment group was

more confident in how the task should be completed, although this

increased confidence did not significantly improve their

performance in the given time and resource constraints.

5.2 H02: Implied Security Goals
We evaluate if the differences in knowledge of implied security

goals had an effect on the quantity of implied security goals

identified by both groups. We investigated the differences between

the groups based on the proportion of correct goals that were

identified for the initial set of assets (initial goals) and the

proportion of correctly identified implied goals. Figure 5 and Table

7 show significant differences between the groups in identifying the

implied goals. Thus we reject the null hypothesis H02 that explicit

knowledge of implied security goals does not impact participants’

ability to elicit these implied goals.

Figure 5. Means and standard errors of standardized

Initial and Implied goals correctly identified.

Overall, a small proportion of implied security goals were

identified for both the treatment and control groups. This was due

to the proportions being calculated with respect to the total number

of implied security goals in the oracle, while the participants were

only able to identify such goals from their set of discovered initial

goals. Differences in the proportions would be even more

pronounced if we standardized the proportions with respect to the

possible implied goals they could identify.

Table 7. Analysis of variance for standardized Initial

and Implied goals.

 Initial Implied

Effect F-value P-value F-value P-value

Task 0.020 0.888 10.60 0.003

System 3.253 0.083 2.251 0.146

Task*
System

0.004 0.953 1.638 0.212

Participants in both groups identified goals related to different

security actions albeit the overall recall was low. Although

providing a systematic process on top of the knowledge

codified as security goal patterns does not seem to significantly

improve the discovery of security goals, the systematic process

can lead to a more positive experience while performing the

task.

Explicitly coding the knowledge about implied security goals

supports the discovery of these goals. However, only a small

proportion of implied security goals were identified for both

the treatment and control groups overall.

5.3 Combined Security Goals by Group
Given that the recall by individual participants was low overall

(Section 5.1), we wanted to compare the control and treatment

groups in terms of the recall of the combined set of security goals

identified by each group. We considered each group as if they were

a team of analysts or stakeholders individually working to identify

a set of security goals for the system.

For the combined analysis of recall for each group, any goal in the

oracle that was identified by any of the participants in a group was

counted as identified by that group. We list the recall values for

initial and implied goal, as well as total recall for both the systems

for treatment and control groups in Table 8. The control group, as

a team, identified 61-62% of applicable security goals, whereas the

treatment group identified 74-79% of all goals as a team. The

difference in recall between treatment and control groups is more

pronounced for the implied goals (12-24% for control vs. 40-54%

for treatment). Of the 131 (101 initial; 30 implied) distinct security

goals correctly identified by participants overall, the treatment

group identified 27 goals (9 initial; 18 implied) that control did not.

Whereas the control group identified only one goal that the

treatment group did not. We cannot make any claims about the

statistical significance of the observed differences based on these

recall values since we did not replicate the groups in our experiment

(i.e., we had only one control and one treatment group). However,

given that neither group was inherently better at identifying

security goals to begin with, these results indicate that participants

in the treatment group identified a larger pool of security goals

based on the additional knowledge and systematic process available

to them. These results additionally indicate that different

individuals may prioritize different security goals and working as a

team, they might be able to carry out a more comprehensive

analysis of the system’s security.

Table 8. Recall of combined security goals
[C: Control; T: Treatment]

 iHRIS Cyclos

Goals C T C T

Initial 0.82 0.92 0.94 0.97

Implied 0.24 0.54 0.12 0.4

Total 0.62 0.79 0.61 0.74

5.4 Threats to Validity
We considered following threats to internal validity:

Selection: We used results of a pre-task quiz to create groups such

that no group was inherently better at identifying security goals

than the other. As part of the post-task questionnaire, we further

asked participants about relevant expertise. Consequently, groups

were evenly balanced in terms of security expertise (approximately

one year of academic security experience) except for one

participant in the control group who had over eight years of security

experience. That participant had the highest total recall in the

control group.

Interactions with selection: We do not have knowledge about how

motivated or security-aware each participant was. This knowledge

might have further helped in assessing why some participants are

more inclined to identify security goals as compared to others.

Training: In the time given to perform the task, participants in the

treatment group had to additionally understand DIGS whereas

control group did not have to understand any new methodology.

Although participants using DIGS understood the framework based

on the feedback, allowing participants in the treatment group to

understand DIGS prior to the task might have levelled the teams in

terms of time available to solely focus on the task.

We considered following threats to external validity:

Representativeness of sample population: Participants had around

one year of security related academic experience on average and a

few months of security related work experience on average. In this

respect, they can be considered equivalent to entry-level, non-

expert security practitioners.

Task representativeness: We provided a high-level description of

two real world systems from different domains for the task. The

task was fairly representative. However, the time and resources to

carry out the task were limited.

Experimental constraints that limit realism: Security analysts are

usually familiar with the problem domain and work as part of a

team to identify security goals over a period of weeks or months.

The experimental constraints could have led to overall low recall of

security goals.

We considered following threats to construct validity:

Measures used: We used standard measures of precision and recall

computed against a-priori established oracle to assess participants’

performance in identifying security goals.

6. DISCUSSION AND LESSONS LEARNED
We have presented the DIGS framework and results evaluating the

framework using a split-plot design, allowing us to extract more

information about the split-plot effects (iHRIS vs Cyclos) and their

interactions with the task group without having to add more

participants. Two key components of DIGS are the security goal

patterns and explicitly documented implied security goals.

Participants in the control group were partially familiar with DIGS,

specifically, security goal patterns. Both groups identified security

goals corresponding to different patterns, covering multiple

security properties and actions captured in the patterns.

Consequently, we could not evaluate how the control group might

have performed in the absence of the knowledge of security goal

patterns. However, based on the findings related to implied goals

in the current experiment and findings from our previous

experiments [18], we would expect to see more pronounced

differences between control and treatment in terms of the different

types of security goals identified and recall of security goals.

Participants using DIGS reported a more positive experience

performing the task as compared to the control group and seemed

robust to the effects of fatigue in the current experimental setup.

The availability of a systematic process might have lessened the

cognitive load on participants thus leading to a more positive

experience. This effect is worth exploring in future studies.

Participants having similar understanding of the background

concepts based on pre-quiz, performed differently when identifying

the security goals. One of the reasons may be that participants who

are similar in capability may be different in terms of security-

awareness [7]. Future experiments should factor in that additional

information when creating groups. Assigning the tasks to groups

rather than individuals may additionally affect the discovery of

security goals, potentially improving recall.

Participants using DIGS, when considered as a team, identified

a larger pool of security goals as compared to the control group.

7. CONCLUSION
We have presented the DIGS framework for systematically

discovering security goals for the assets in a system. DIGS supports

organizing the security goals related to a particular asset, security

property, or security action. This organization is intended to help in

quickly identifying areas where goals have not been specified and

that may need additional security fortification. By providing a set

of 18 security goals patterns and corresponding implied goals, we

assist an analyst to consider security of assets from multiple

dimensions. We are integrating DIGS in a tool to automate parts of

the analysis. We have conducted a controlled experiment to

evaluate DIGS in identifying security goals. Our results indicate

that participants are able to consider security goals commensurate

to the knowledge available to them. Although the overall recall was

low, participants using DIGS reported a more positive experience

while performing the given tasks. Moreover, when considered as a

team, participants using DIGS identified a larger pool of security

goals as compared to the control group. Our research contributes

towards systematic identification of security goals and helps in

considering security requirements to meet those goals that may

have been missed otherwise.

8. ACKNOWLEDGMENTS
This work is supported by NSA Science of Security lablet. We are

thankful to the lablet and Realsearch group for their collaboration.

Special thanks to Dr. William Enck for his help with the study.

9. REFERENCES
[1] Alshazly, A.A., Elfatatry, A.M. and Abougabal, M.S. 2014.

Detecting defects in software requirements specification.

Alexandria Engineering Journal. 53, 3 (2014), 513–527.

[2] Anton, A. and Potts, C. 1998. The Use of Goals to Surface

Requirements for Evolving Systems. Proceedings of the 20th

International Conference on Software Engineering

(Washington, DC, 1998), 157–166.

[3] Bishop, M. 2002. An Overview of Computer Security.

Computer Security: Art and Science. Addison-Wesley.

[4] Elahi, G. and Yu, E. 2007. A Goal Oriented Approach for

Modeling and Analyzing Security Trade-Offs. 26th

International Conference on Conceptual Modeling (2007),

375–390.

[5] Firesmith, D. 2004. Specifying Reusable Security

Requirements. Jornal of Object Technology. 3, 1 (2004), 15.

[6] Harville, D.A. 1977. Maximum likelihood approaches to

variance component estimation and to related problems.

Journal of the American Statistical Association. 72, (1977),

320–340.

[7] Hibshi, H., Breaux, T., Riaz, M. and Williams, L. 2014.

Towards a framework to measure security expertise in

requirements analysis. 1st International Workshop on

Evolving Security and Privacy Requirements Engineering

(ESPRE) (Sweden, 2014).

[8] Ito, Y., Washizaki, H., Yoshizawa, M., Fukazawa, Y., Okubo,

T., Kaiya, H., Hazeyama, A., Yoshioka, N. and Fernandez,

E.B. 2015. Systematic Mapping of Security Patterns Research.

Plop. (2015).

[9] Jedlitschka, A., Ciolkowski, M. and Pfahl, D. 2008. Reporting

experiments in software engineering. Guide to Advanced

Empirical Software Engineering. Springer London. 201–228.

[10] Kurt Schneider, Eric Knauss, Siv Houmb and Shareeful Islam

2012. Enhancing security requirements engineering by

organizational learning. Requirements Engineering. 17, 1

(2012), 35–56.

[11] Lamsweerde, A. v. 2004. Elaborating Security Requirements

by Construction of Intentional Anti-Models. International

Conference on Software Engineering (ICSE 2004)

(Edinburgh, Scotland, 2004), 148–157.

[12] LaPiedra, J. 2002. The Information Security Process:

Prevention, Detection and Response.

[13] McGraw, G. 2006. Software Security: Building Security In.

Addison-Wesley Professional.

[14] Mead, N.R., Houg, E.D. and Stehney, T.R. 2005. Security

Quality Requirements Engineering (SQUARE) Methodology.

Software Engineering Institute.

[15] Montgomery, D. 2012. Nested and Split-Plot Designs. Design

and Analysis of Experiments. 604–641.

[16] Riaz, M., Breaux, T. and Williams, L. 2015. How Have We

Evaluated Software Pattern Application? A Systematic

Mapping Study of Research Design Practices. Information

and Software Technology. 65, (2015), 14–38.

[17] Riaz, M., King, J., Slankas, J. and Williams, L. 2014. Hidden

in plain sight: Automatically identifying security requirements

from natural language artifacts. 22nd International

Requirements Engineering Conference (RE) (2014), 183–192.

[18] Riaz, M., Slankas, J., King, J. and Williams, L. 2014. Using

templates to elicit implied security requirements from

functional requirements - A controlled experiment. 8th

ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM) (2014), 1–10.

[19] Riaz, M. and Williams, L. 2012. Security requirements

patterns: Understanding the science behind the art of pattern

writing. Proceedings of the 2nd IEEE International Workshop

on Requirements Patterns (RePa). (2012), 29–34.

[20] Schumacher, M., Fernandez-Buglioni, E., Hyberston, D.,

Buschmann, F. and Sommerlad, P. 2006. Security Patterns:

Integrating Security and Systems Engineering. John Wiley &

Sons, Ltd.

[21] Sindre, G. and Opdahl, A.L. 2005. Eliciting Security

Requirements with Misuse Cases. Requirements Engineering.

10, 1 (2005), 34–44.

[22] Slavin, R., Lehker, J.M., Niu, J. and Breaux, T.D. 2014.

Managing security requirements patterns using feature

diagram hierarchies. Proceedings of the 22nd IEEE

International Requirements Engineering Conference. (2014),

193–202.

[23] Suleiman, H. and Svetinovic, D. 2013. Evaluating the

effectiveness of the security quality requirements engineering

(SQUARE) method: A case study using smart grid advanced

metering infrastructure. Requirements Engineering. 18, 3

(2013), 251–279.

[24] Walia, G.S. and Carver, J.C. 2009. A systematic literature

review to identify and classify software requirement errors.

Information and Software Technology. 51, 7 (2009), 1087.

[25] Williams, L., Meneely, A. and Shipley, G. 2010. Protection

Poker : The New Software Security “Game.” IEEE Security

and Privacy. June (2010), 14–20.

