Access Control Policy Identification and Extraction

from Project Documentation

John Slankas and Laurie Williams
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA
Email: [john.slankas,laurie williams]@ncsu.edu

ABSTRACT

While access control mechanisms have existed in
computer systems since the 1960s, modern system
developers often fail to ensure appropriate
mechanisms are implemented within particular
systems. Such failures allow for individuals, both
benign and malicious, to view and manipulate
information that thev should not otherwise be
able to access. The qoal of our research is to help
developers improve security by extracting the
access control wpolicies implicitly and explicitly
defined in mnatural lanquage vroiect artifacts.
Developers can then verify and implement the
extracted access control policies within a system.
We propose a machine-learning based process to
parse existing, unaltered natural language
documents, such as requirement or technical
specifications to extract the relevant subiects,
actions, and resources for an access control policy.
To evaluate our approach, we analvzed a public
requirements specification. We had a precision of
0.87 with a recall of 0.91 in classifving sentences
as access control or not. Through a bootstrapping
process utilizing dependency graphs, we correctly
identified the subijects, actions, and obiects
elements of the access control policies with a
precision of 0.46 and a recall of 0.54.

I INTRODUCTION

Despite significant remediation efforts over the
past decade, such as those due to information
technology controls required for Sarbanes-Oxley
[1]. and the highlighting of access control errors in
lists such lists as the CWE/SANS Top 25 Most
Dangerous Software Errors [2]. access control
remains a significant issue. In the 2013 Verizon
Data Breach Investigations Report [3]. 61% of the
incidents included some form of access control
abuse. Just as significant. 60% of the breaches
went undiscovered for months. Edward Snowden’s

145

public disclosure of the National Security
Agency’s PRISM program [4] demonstrates the
challenges organizations face in keeping
information secure. In this situation, Snowden
inappropriately accessed electronic documents he
should not have been able to access.

To mitigate data security issues, organizations
must properly implement access control across all
system components. Access control is a critical
application mechanism to ensure confidentiality
and integrity [5]. While various access control
models exist (discretionary, mandatory, role-
based. attribute, etc.). most models contain a
tuple (subiect, resource. action) to represent a
policy as to whether or not the subiject (a user)
can perform the requested action on the specified
resource (object) within the system. Access
control policies are often expressed. implicitly or
explicitly, within nature language. For example,
“The system shall allow hospital administrators to
inactive patients” explicitly grants users who are
hospital administrators the ability to inactivate
patients. However, creating and defining the
correct access control policies can be a tedious,
time-consuming, and error-prone endeavor.
Developers must extract access control policies
from existing documentation, application code,
and database implementations. As an extreme
example, the United States Department of Defense
has over 180 different policy documents from 16
sources for its Trusted Global Information Grid

[6].

The qoal of our research is to help developers
improve security by extracting the access control
policies implicitly and explicitly defined in natural
language project artifacts.

We propose a process, which we call Access
Control Relation Extraction (ACRE), which
allows organizations to utilize existing,

unconstrained natural language text to extract

Page 1 of 15
© ASE 2013

access control policies. ACRE analvzes
requirements or other natural language statements
to obtain their subiect, action, and resource
elements. For each sentence, ACRE first parses
the sentence into a dependency graph that
represents the svntactic relationships between
words within the sentence. Next, the process
makes a decision about whether the sentence is
related to access control or not. If the sentence is
considered to involve access control, then the
process utilizes relations among the words to
extract subiects, actions, and resources based
upon initial and learned patterns within the
dependency graph. From the actions and other
information in the pattern. the permissions can be
inferred for the access control policy. Once the
appropriate natural language documents have
been examined, the process validates the extracted
access control policies.

The process utilizes a combination of natural
language processing (NLP), information extraction
(IE), and machine learning (ML) techniques. A
critical component to our process is the generation
of appropriate dependency graph patterns based
upon an initial set of seeded patterns and then
expanding the set of patterns through extracting
new patterns where combinations of any
discovered access control elements (subiects,
actions, resources) can be located in the current
document under investigation. This approach of
learning new patterns from an initial set of seed
patterns is termed “bootstrapping” [7]. Due to the
ambiguity and multitude of different ways of
representing concepts within natural language, our
process allows for humans to enter undiscovered
patterns or correct patterns misidentified in the
bootstrapping approach.

To evaluate our process,
following research questions:

we developed the

RQ1l: How effectively can we identifv access
control policies in natural language text in
terms of precision and recall?

RQ2: What common patterns exist in sentences
expressing access control policies?

RQ3: What is an appropriate set of seeded

graphs to effectively bootstrap the process
to extract the access control elements?

146

We evaluated our process and tool against an
open source educational testbed, the iTrust
Electronic Health Records System* [8].

Our research contributes the following:

e A bootstrapping approach for to seed and
discover access control patterns in natural
language text.

e A minimal document grammar to produce
additional contextual information for titles and
lists in documents.

e Process and tool to extract access control
elements in natural language text.

The rest of this paper is organized as follows:
Section II provides requisite background
information. Section III presents related work.
Next, Section IV details ACRE and the associated
tool. Section V presents our methodology. Section
VI presents our evaluation of the approach.
Section VII discusses limitations. In Section VIII,
we discuss future work. Finally, we conclude in
Section IX.

ITI BACKGROUND

This section presents on overview on the material
necessary to understand paper’s approach to
extracting access control policy and evaluating the
effectiveness.

1 MACHINE LEARNING AND CLASSIFICATION

To identify access control related statements from
unconstrained natural language texts, we need
flexible, vet effective classification methods to
handle different documents and multiple ways of
expressing similar concepts. Machine learning
provides such a foundation for our work. While
techniques and algorithms vary widely in machine
learning, thev can be generally divided into two
primary categories: supervised learning and
unsupervised learning. In supervised learning,
people train classifiers with labeled data. People
and systems then use these classifiers to decide in
which class a previously unseen instance belongs.
In contrast, unsupervised learning algorithms
search data for common patterns (clusters). The

! http://agile.csc.ncsu.edu/iTrust/

Page 2 of 15
© ASE 2013

http://agile.csc.ncsu.edu/iTrust/

data is not directly labeled, but rather groups of
common instances are created.

For this work, we utilized a k-nearest neighbor
classifier (k-NN), which is a supervised learning
algorithm. k-NN classifiers work by classifying a
test item based upon which items previously
classified are closest to the current test item. The
classifier finds the k nearest “neighbors” and
returns a majority vote of those neighbors to
classify the test item. A distance metric
determines the closeness between two items.
Euclidean distance often serves as a metric for
numerical attributes. For nominal values, the
distance is binary — zero if the values are the same
or one if the values differ. k-NN classifiers may
use custom distance functions specific to the
current problem. Advantages of k-NN classifiers
include the ability to incrementally learn as new
items are classified, to classify multiple tvpes of

data, and to handle large numbers of item
attributes. The primary drawback of k -NN
classifiers involves algorithm runtime; if the

classifiers have n items stored, classification takes
0(n) time.

We evaluated other supervised learning algorithms
including naive Bayes, Support Vector Machines
(SVM), and term frequency — inverse document
frequency (TF-IDF). A naive Baves classifier
works by selecting a class with the highest
probability from a set of trained data sets given a
specific document. Fundamentally, it assumes that
each feature of a class exists independently of
other features. Despite the simplification, the
approach performs effectively in real-world
problems. Naive Baves classifiers tvpically require
fewer trained instances than other classifiers. SVM
classifiers work by finding the optimal separator
between two classes. As with naive Baves. text is
represented as a word vector [9]. Within TF-IDF,
each word belonging to a category is represented
by two values: (1) the frequency a given term
appears within a given document: and (2) the
frequency of the total number of documents over
the number of documents containing a specific
term. The second value places a higher premium
on terms appearing in fewer documents.

2 CLASSIFICATION EVALUATION

To compare the results, we used recall, precision,
and the F, measure. To compute these values, we
first need to categorize the classifier’s predictions

147

into three categories for each classification value.
True positives (TP) are correct predictions. False
positives (FP) are predictions in which the
sentence of another classification is classified as
the one under evaluation. False negatives (FN)
are predictions in which a sentence of the same
classification under evaluation is placed into
another classification. From these values, we
define precision (P) as the proportion of corrected
predicted classifications against all predictions
against the classification under test. We define
recall as the proportion of classifications found for
the current classification under test. The F;
measure is the harmonic mean of precision and
recall, giving an equal weight to both elements.
The specific formulas are defined in Fig. 1. From
an access control perspective, high values for both
precision and recall are desired. Lower precision
implies that the process will ultimately grant a
role more incorrect permissions than a
classification with higher precision. Lower recall
implies that we will have missed access control
sentences.

R i
" TP +FP
r TP
" TP+FN
F —ZXPXR
U7 P+R

Figure 1: Formulas for Precision, Recall, and F;
3 INFORMATION EXTRACTION

IE is an area of NLP concerned with finding
structured data from text [7]. IE differs from
information retrieval (e.g. web searches) in that
IE’s goal is to extract information rather than
provide a ranked list of relevant documents to a
query. Common IE tasks include named entity
recognition, reference resolution, relation
extraction (RE) and event extraction. A relation
expresses the relationship between two entities.
Common relation tvpes include “is-a” and “part-
of”. For example, “a bicycle is a vehicle” is
represented by is a(bicucle, vehicle) and bicycles
have two wheels is represented by
contains(bicycle, wheels). Similarly. we can have
relation writes(doctor, prescription) to indicate
that a doctor can write a prescription. The IE
field has advanced largely due to the investments
by the United States government through

Page 3 of 15
© ASE 2013

challenges sponsored by DARPA [10] and NISTZ
State of the art systems for RE in these challenges
typically have around 85% precision and 70%
recall [11].

Access control policy extraction is most similar to
the RE task in that the relation (action) between
the subiect and resource implies much of the
access control policy within a statement. However,
access control extraction differs from most RE
task in that it is not constrained by small, fixed
sets of binarv relations [7]. Additionally, access
control extraction needs to infer the appropriate
permissions based upon the identified relation
(action). The permission may be further
constrained by other features within the sentences
such as negativity or access limitations to just a
particular person.

III RELATED WORK

This section reviews the work related to our
research.

1 NATURAL LANGUAGE ACCESS

CONTROL

AND

Other researchers have explored using natural
language to generate access control policies from
natural language. He and Antén [12] proposed an
approach based upon available project documents,
database design. and existing policies. Utilizing a
series of heuristics, humans would analyze the
documents to find additional access control
policies. In addition to heuristics to find the
elements within the typical access control tuple
(subiject, resource, action), they created heuristics
to identify policy constraints (temporal. location,
relationship. privacy. etc.) and obligations. More
recently, Xaio et al. [13] present an approach,
Text2Policy, where they parsed use cases to create
eXtensible Access Control Markup Language ?
(XACML) policies. Their approach was specific to
use case-based requirement specifications and
relied upon matching four specific sentence
patterns to deduce the necessary information to
populate an access control method.

% http://www.itl.nist.gov/iad /mig/tests/ace/
* http://www.oasis-open.org/committees/xacml

148

2 CONTROLLED NATURAL LANGUAGE

Other researchers have resolved converting
natural language to and from policies by utilizing
a controlled natural language (CNL). Schwitter
[14] defines CNLs as “engineered subsets of
natural languages whose grammar and vocabulary
have been restricted in a systematic way in order
to reduce both ambiguity and complexity of full
natural languages.” @ While CNLs provide
consistent, semantic interpretations, CNLs limit
authors and typically require language specific
tools to stay within the constraints of the
language. Proiect documents previously created
cannot be used as inputs without processing the
documents manually into the tools. Policies
authored outside of tools must confirm to strict
limited grammars to be automatically parsed as
well. Brodie et al. [15] used this approach in the
SPARCLE Policy Workbench. By using their own
natural language parser and a controlled
grammar, they were effectively able to translate
from controlled natural language into formal
policy. Users responded favorably to their policy
authoring tool. Inglesant et al. [16] demonstrated
similar success with their tool. PERMIS, which
utilizes a RBAC authorization model. However,
they did report issues with users not
understanding the predefined “building blocks”
imposed by using a CNL. Recently, Shi and
Chadwick [17] presented their results of an
application to author access control policies using
a CNL. While they showed the improved usability
of CNL interface, they were limited in the
complexity of the policies that could be created as
the interface did not support conditions or
obligations. Our approach utilizes proiect artifacts
without any change to the vocabulary or structure
of the sentences.

3 RELATION EXTRACTION

A number of different wavs exist to identify
semantic relations within text. Initial solutions
emploved hand-written patterns to detect
hyponvm (“is-a”) relationships among words [18].
While hand-written patterns usually have high
precision, thev tend to suffer low recall by missing
relation occurrences. Snow et al. [19] wused
dependency paths and grammatical relationships
within a sentence to discover additional
relationship patterns. Akbik and Brof [20] used a
similar process to extract a diverse range of
sematic relations with the goal to extract

Page 4 of 15
© ASE 2013

http://www.itl.nist.gov/iad/mig/tests/ace/
http://www.oasis-open.org/committees/xacml

arbitrary relations for semantic search. Zhou et al.
[21] documented a variety of possible features to
use in relation classification. Dependency parse
tree patterns have been wused to extracting
relations between genes and proteins [22]. Recent
research with regards to information extraction
has focused on gathering a wide range of relations
from extremely large document collections (e.g.,
portions of the Internet such as Wikipedia). Such
approaches typically use distance supervision (i.e..
a trusted source of known relations) to evaluate
discovered patterns [23]. Wu and Weld [24]
extended this approach and utilized Stanford’s
NLP to extract the shortest dependency path
between two words. They then trained a classifier
to determine if the extracted relations are valid.
More recently, Mausam et al. [25] developed a
new system, OLLIE that allows for relations to
mediated by parts of speech other than nouns and
provides support for contextual modifiers to
determine if relations are correct. Our work builds
primarilv upon the last work. We utilize
dependency graphs., but extract the minimum
graph pattern that overlays the lowest common
ancestor of all of the included elements of the
dependency graph. These elements include the
subiect. action, the relation. anv indication of
negativity, anv indication of access limited to a
particular subiject, and anv contextual information
necessary to disambiguate the necessary
permissions for the access control policy. As with
other works [19]. we include capability to
bootstrap the possible graph patterns and a naive
Baves classifier to judge whether such derived
patterns should be include in the evaluation set.

IV ACCESS CONTROL RELATION

EXTRACTION

This section details our process, Access Control
Relation Extraction (ACRE). to extract access
control policies from natural language text. We
first present how access control appears within
natural language text, then our representation of
access control policy, and then the overall process.

1 Access CONTROL NATURAL

LANGUAGE

AND

Within natural language texts, access control
elements are both explicitly and implicitly stated.
For example, “The system shall allow patients to
view their own medical records” explicitly grants
users who are patients the right to read their

149

medical records. Other sentences such as “A nurse
can order a lab procedure for a patient” implies
two access control policies. First, the nurse has
some form of create or write permission for lab
procedures. Secondly, since the lab procedure is
for a patient, another access control policy
implicitly exists to grant the nurse read access to
patients. In many situations, the verb that
tvpically represents the action within the sentence
implies the necessary permissions to be granted.
However, in some cases. the permissions are not
necessarily so straightforward. As with the second
example, the verb “order” combined with the
prepositional phrase, “for the patient”, implies
read access to a patient. Another example of the
need to utilize other contextual information is the
sentence, “The doctor mav add or remove patients
from the monitoring list.” Naively, one could
assume that doctors have the right to add or
remove patients. In this sentence, though, the
doctor is granted the right to manipulate the
monitoring list by adding or removing patients.
Additionally, we assume that the doctor has a
read permission on a patient object in order to
perform the former activities.

Denying users permission to an obiect when they
should not have access to that obiect is a critical
feature of any access control system. As such, we
need to develop patterns to detect when
permission should be explicitly revoked from a
particular subiject in an access control policy.
From the Dixon’s negation concepts [26], we
utilize multiple methods to detect negation within
a sentence. We can detect specific adiectives
(unable), adverbs (not. never)., determiners (no.
zero, neither), and nouns (none, nothing) [27]. We
also utilize specific negative verbs (stop. prohibit.,
forbid) as well as a pre-determined list of negative
prefixes associated with English words.

Within a system, privileges are often limited to
one or more specific roles. For the sentence “only
an administrator can maintain system lookup
tables”, we need to grant permission to the
administrator role while restricting the permission
from all other roles. Within English, restrictive
focus modifiers [27] express such limitations. As
the position of such modifiers (e.g. just, only)
affect the overall semantic meaning of the
sentence, we restrict where such modifiers may be
placed. For example, consider the sentence,
“Doctors write prescriptions.” We assume the
doctor has the privilege to write prescriptions

Page 5 of 15
© ASE 2013

(possibly an insert permission on a “prescription”
table within a relational database). However, if
the word “only” is placed into the sentence. then
the meaning of the sentence varies based upon the
location of “only”. With only as the first word,
the sentence means that only doctors write
prescriptions and no other roles. Alternatively, if
only is the second word, it modifies “write” and
implies that the only action doctors can do in the
system is write prescriptions. Finally, if only is the
third word, the sentence now means that
prescriptions are the only things doctors write. To
ensure the modifiers are in the correct location, we
set the limit flag for a sentence if the modifier
applies to the subiject identified in the sentence. If
the modifier exists elsewhere, we flag the sentence
for having a potential problem.

2 ACRE Access CONTROL PoLICY
REPRESENTATION
Internally, we represent sentences with a

dependency graph as depicted in Fig. 2 for the
sentence “a nurse can order a lab procedure for a
patient.” (In the next section, we discuss how
these graphs are produced.) Each vertex
represents a word from the sentence along with
the word’s part of speech. In the figure, “NN”
represents a noun, “VB” represents a verb, and
“MD” represents a modal verb. Edges represent
the grammatical relationship between two words.
For instance, “nurse” functions as the nominal

subiect (nsubi) for “order” and “lab procedure” is
the direct obiect (dobi) to be ordered. Dependency
graphs can be considered trees in most situations
and are typically rooted bv the sentence’s main
verb. When conijunctions are present, nodes may
thus,

have multiple parents and, need to be

treated as graphs.

atient
RF' MK

Figure 2: ACRE Sentence Representation

To represent an access control policy, we utilize
the following pattern, termed an “access control
pattern”:

150

A({s}, {a}, {r}, [n], [1]. {c}, H,p)

Figure 3: Access Control Representation

A defines the overall access control policy. s
contains an order set of vertices that compose the
subject of a policy. Similarly, a and r represent
the action and resource, respectively. n contains
the vertex representing negativity if required for
the policy. If the policy should be limited to a
particular subject s, | contains the indicating
vertex. ¢ contains any additional vertices required
to provide context to given action for a set of
permissions. H represents the subgraph of a
sentence’s dependency graph that contains the
vertices and necessary edges to connect all of the
vertices listed in s,a,r,n,l,c. p represents the
permissions typically associated with an action.
We limit permissions to have the wvalues of
“create”, “retrieve”, “update”, and “delete” as we
are primarily concerned with controlling the
ability to view and manipulate data in systems.
From the example in Fig. 2, we define these two
policies:

A((nurse), (order), (lab procedure), (), (), (V:nurse, order, lab procedure;

E: (order,nurse, nsubj); (order, lab procedure, dobj)), create)

A((nurse), (order), (patient), (), (), (V:nurse, order, patient;
E: (order,nurse, nsubj); (order, patient, prep_for)), read)

Figure 4: Extracted Access Control Policies

Situations exist in which not all of the access
control policy elements mav be present within a
single sentence. These access control policies may
be identified with missing elements. Developers
would be pointed to the surrounding sentences to
finish defining the access control policy.

3 ACCESS CONTROL RELATION EXTRACTION
PROCESS

The ACRE process consists of five primary steps:
Parse text document

Parse natural language

Classify sentence as access control or not
Extract access control elements

Validate access control policies

U o=

Step 1: Parse Text Document

The process first reads the entire text into the
system. We then separate the input into tokens by
either new lines or bv periods at the end of
sentences. Next. we applv a concise document
grammar (Fig. 5) to label each token to a specific

type:

Page 6 of 15
© ASE 2013

e {itle: Lines which follow capitalization rules
for titles. We separate them from other lines
in our process because titles never indicate an
access control related requirement.

e [list start: These lines represent the header or
description of a list that follows.

o [ist element: These lines represent individual
items contained within an ordered or
unordered list. These lines are combined with
the start of the list when sent to the parser
and for classification. Combining the two
provides additional context to both human
analysts and machine classifiers.

e normal sentence: These lines represent
statements that are not considered titles, list
starts, or list elements.

document - line

line = listID title line | title line | sentence line | A
sentence — normalSentence | listStart (“:” | “-7)
listElement

listElement =
listID -
listParanID —

listID sentence listBlement | A
listParanID | listDotID | number

“(7 4d “)” listParanID | id “)” listParanID |
A
id “.” listDotID | A

letter | romanNumeral | number

listDotID -

id -

Figure 5: Document Gramimar

identifv heading and list identifiers
(e.g., “4.1.1” and “¢”). The process removes these
identifiers from the sentence passed into the
natural language parser in Step 2 as the identifiers
created issues with the generated output from the
parser. If any irregularities are found, the parser
defaults the current token (sentence) to “normal
sentence” to recover.

Further, we

Within Fig. 2. italicized words represent
nonterminal symbols that can be replaced by
other symbols on the right-hand side. Words in
normal font are terminal svmbols. Characters
within quotation marks are also specific terminal
svmbols. A represents an empty expansion of a
nonterminal.

Step 2: Process Natural Lanquage

After identifving the different sentence tvpes. the
process parses each line (sentence) with the
Stanford Natural Language Parser (NLP) and
outputs a graph in the Stanford Type Dependency
Representation (STDR) [28]. While the Stanford
Parser has several output formats available, we
choose the STDR because it incorporates the

151

sentence’s syntactic information in a concise and
usable format.

To replace shorthand or remove text that the
parsing would not recognize, the process allows for
a series of regular expressions to be applied to the
text. Specifically in our work, we wuse this
mechanism to replace ‘w/’ with ‘with’ and ¢/’ with

‘)

or.

As the Stanford Parser processes sentences, it tags
each word with a part of speech. Due to
differences in text used to train the parser versus
text used by our process, the parts of speech may
be incorrect. To overcome this issue, we inserted a
custom method into the parsing pipeline to
override the part of speech tags if thev are
incorrect. For instance, we discovered that the
parser alwavs tagged “displays” as a plural noun
whereas in most sentences in our text “displays” is
a verb. The custom method looks for specific
patterns among a group of words, and then
replaces the incorrect part of speech. Incorrect
tags can lead to an incorrect dependency graph
being generated. In turn, an incorrect dependency
graph can limit the effectiveness of the ACRE
process. Both overrides are configurations
established at the time the tool starts and are
applied without user intervention to the entire
text.

Fig. 6 demonstrates the produced STDR for the
sentence “a nurse can order a lab procedure for a
patient.” Each vertex contains a word from the
sentence along with that word’s part of speech. In
the figure, “DT” represents a determiner, “MD” a
modal verb, “NN” a noun. and “VB” indicates a
verb. Edges represent the grammatical
relationship between two words. For instance,
“nurse” functions as the nominal subiect (nsubi)
for “order” and “dobj” is the object to be ordered.

From the STDR generated by the parser, we
create our sentence representation (SR) as ACRE
needs to track additional attributes for the
sentence and for each word. Additionally, some
words in the original sentence are not required for
our purposes and, hence, removed from the SR.

Page 7 of 15
© ASE 2013

prep_for

Figure 6: Stanford Collapsed Type Dependency Graph

Fig. 2 shows our corresponding SR for the same
sentence as in Fig 6. The primary differences
between the two graphs are the number of vertices
and how each word is represented within a vertex.
Within our SR, vertices correspond to words in
the sentence and contain the word, the word’s
lemma* part of speech. domain flag, and access
control policy indicators. The indicators
correspond to the subiject(“S”), action(“A”),
resource(“R”) typically defined within an access
control tuple.

Using a pre-order traversal, the process creates the
SR from the Stanford graph. As each vertex is
created, we make two changes to the nodes. First,
to avoid multiple versions of the same word, we
use the lemma of the original word. Second, to
avoid differences in the part of speech, we collapse
the parts of speeches for all nouns and verbs to
their base category. For example, we treat all
plural nouns and proper nouns as just nouns.
Similarly, verbs with different tenses are treated
collectively as a single group. We use a verv small
stop word list to remove common determiners®
from the SR. Additionally, we check if it is
feasible to collapse adijective and noun modifiers
into parent noun nodes. Fig. 2 demonstrates this
collapsing as we combined “lab” and “procedure”.
Bv removing extraneous nodes from the SR. we
reduces the overall size of each graph, which in
turn. provides fewer irrelevant attributes to a
machine learning algorithm and provides for more

4 A lemma is a common root word for a group of
words. For instance, sang, sung, and sings are all
forms of a common lemma “sing.” A stem is the
root of a word after a suffix has been stripped. [7]

% a, an, the

152

concise patterns to be used in extracting access
control policies.

Step 8: Classify Sentence as Access Control or
Not

After Step 1 and Step 2 are both completed, a
machine-learning algorithm classifies a sentence as
access control or not. If the sentence does not
express an access control policy, we perform no
further analysis on it.

The process uses a k-NN classifier as the primary
classifier. Such classifiers work by taking a
majority vote of the existing classifications of the
k nearest neighbors to the item under test. Thus,
in our situation, to classify a sentence, the
classifier needs to find which existing classified
sentences are most similar to the current sentence
under test. k-NN classifiers use a distance metric
to find the closest neighbors. This metric is the
sum of the differences among the attributes used
to determine the classification. Typically,
Euclidean distance serves as a metric for
numerical values while for nominal values (e.g..
words), the distance is generally considered to be
zero if both values are the same or one if they
differ. Our situation is more complex as we have a
variable number of attributes (words, parts of
speech, named entities) to consider for each
sentence based upon the sentence length.
Additionally, certain words may be more closely
related to one another than other words. As such.
we need to utilize a custom distance metric to
compute a value representing the difference
between two sentences.

Our distance metric is a modified version of
Levenshtein distance [29]. Rather than using the
resulting number of edits to transform one string
into another as the value as the Levenshtein
distance does, our metric computes the number of
word transformations to change one sentence into
another. Rather than strictly using just zero or
one as the difference between words. the metric
uses the function defined in Fig. 7. The function
first checks the structure of graph around each
vertex to ensure it corresponds to other vertex.
Next. the function checks if the two vertices are
the same (lemmas are equal). In line 7. we check if
both words are numbers. Next. line 8 checks if
both words are the same tvpe of named entity
such as a person or an organization. Then in line
9, the function checks if the two words are related
through sets of cognitive synonyms (synsets)

Page 8 of 15
© ASE 2013

within WordNet ¢ via semantic relationships
(hypernvm or hyponvm). If a relationship value is
found, then a wvalue between 0.1 and 0.4 is
returned based upon the number of relationships
traversed. Finally, a default value of 1 is returned
if none of the other conditions are met.

computeVertexDistance (Vertex a, Vertex D)
: if a = NULL or b = NULL return 1

: if a.partOfSpeech <> b.partOfSpeech return 1
: if a.parentCount <> b.parentCount return 1

: for each parent in a.parents

: if not b.parents.contains (parent)
: if a.lemma = b.lemma return 0

: if a and b are numbers, return 0
if ner classes match, return 0

: wnValue = wordNetSynonyms (a.lemma,b.lemma)
: if wnValue > 0 return wnValue

: return 1

—

return 1

H O W -Jo U WwN

=

Figure 7: Compute Vertex Distance Logic

In prior work [30]. we found that if we used a
similarity threshold for the nearest neighbor(s) to
determine whether or not to vprovide a
classification answer, the k -NN classifier F;
performance would be 1.0 (no misclassifications) .
although not all of the sentences would be
classified. As such, we decide to utilize multiple
machine learning algorithms to produce the final
classification result. If the k -NN classifier’s
threshold is below a certain ratio (0.6) based upon
the computed distance to the nearest neighbor(s)
compared to the length of the sentence, we return
the k-NN classifier’s answer. Otherwise, we return
a majority vote of the k-NN, naive Baves, and
SVM classifiers. We term this classifier as
“Combined SL.”

Once the process makes determines if the sentence
is related to access control or not, the user may
review the determination and correct it if
necessary within the tool. Fig. 10 shows a
screenshot of the tool’s user interface. The top
table contains the document with individual
columns to display the line number, sentence tvpe,
assigned classification, and completion status,
assigned cluster (groups of similar sentences,
optional functionality), and the sentence
themselves. The dialog in the lower left allows
users to review and manually enter or correct
access control policies (discussed in the next
section). The area in the lower right displays the

SR.

¢ http://wordnet.princeton.edu/

153

Step 4: Extract Access Control Elements

Next, we need to extract the subiect, action, and
resource elements from the SR. We utilize a
relation extraction approach for the identification
of access control elements and subsequent
extraction of the process. The approach follows a
well-known bootstrapping technique [7]. but has
been adapted specifically for access control policy
extraction.

To initialize the process (presented in Fig. 9), we
seed a set of ten basic access control patterns with
each pattern consisting of just three nodes as
shown in Fig. 8. Each pattern is the same. except
a different verb” is utilized for “Specific Action”.
Wildcards are used to match anv nouns in
sentences containing the pattern. We initially
choose the words “create”, “retrieve”, “update”,
and “delete” because the words are commonly
associated with viewing and manipulating data.
We then examined the frequency of all verbs
within the document and chose to add six more
verbs associated with data and appearing with
high frequencies within the document. Based upon
the application domain or other documents, users
may choose a different set of starting actions.
From these patterns. we match all occurrences of
the subiects and resources within the document
along with their associate frequency counts. From
the counts, we computed the mean values for the
subijects and resources. We then assume anvy word
that occurs more than the mean legitimately
belongs to the application domain. Without a
threshold, the potential for misidentified subiects
and resources is much greater as any word
matching the pattern would be accepted.

The subiects and resources are then stored in a
listing of known subiects and resources. From this
listing, we then search the document where anvy
subiject exists along with anv resource. For each
sentence that does match the condition, we
extract the dependency pattern between subiect
and resource vertices. We then assume any verbs
existing in that pattern are the actions. If more
than one verb exists in the shortest path from the
subiect to the obiject, we combine the verbs. In
the sentence, “the administrator chooses to create
a new patient”, we combine “choose” and “create”

" create, retrieve, update, delete, edit, view,
modify, enter, choose, select
Page 9 of 15
© ASE 2013

http://wordnet.princeton.edu/

to “choose create” for the action. The subiect
would be “administrator” and the obiect would be
“patient”. We derive permissions for each pattern
based finding the closest synonym in WordNet
were a permission has already been defined in the
process for an action.

Figure 8: Basic Access Control Seed Pattern

Once we extract the pattern, we applv a series of
transformations to extract additional patterns
that mav locate additional access control policies.
Specifically, we transform patterns that have an
active voice into passive voice and vice versa. We
also transform the patterns to assume
conjunctions mayv exist for two or more subiects,
two or more actions, and two or more resources.

From the wpattern set, we then search the
documents for anv sentences matching one or
more patterns. Once we find anv match, we check
to see if other patterns match the same sentence.
If more than one pattern does match and one
pattern can be considered a “sub-pattern” of
another pattern. we discard the “sub-pattern”
match from the list of results as the other graph
has provided a more specific match. Additionally,
we check the matched sentences for anvy children
nodes of the matched pattern that imply
negativity or subiect limitation (i.e., we look to
see if there is relevant indicator just outside of the
match subgraph).

Seed
Patterns

A 4 A 4

Known Subject &
Subjects &
Resources

Resource
A

Manually

Match Subject

and Resources Identified

Patterns

Pattern
Extraction and
Transformation

Y

Search

A 4

4%” Set ;

Pattern
Search

Extracted Access

Control Patterns

Figure 9: Access Control Extraction Overview

154

The extracted access policy is then stored in a list
for validation and output to the user. Anv new
subiects or resources are then added to the list of
known subijects and resources. If newly discovered
subiects or resources exist, then the bootstrapping
process can repeat until no new items or patterns
are discovered. Once the process has stopped, the
user may manually identify access control
patterns. The information from these patterns is
feed into the process to search for additional
extracted elements.

Step 5: Validate Access Control

In this step, the tool checks for coverage and
conflicts within the extracted access control
policies. Coverage is reported as measure for each
subiject as to the number of identified resources
that it has access control rules identified. As we
assume a default of no-access, 100% coverage is
not required. However, low coverage values may
indicate a need for further access control policies.
Conlflicts occur within our process when a specific
subiject has been both granted permission to a
specific resource and restricted for the same
permission on the same resource. Such conflicts
may arise due to policy extraction in multiple
locations or the use of a limiter to restrict access
to a specific subject.

V EVALUATION METHODOLOGY

This section describes the application we utilized
to evaluate our process, how the study oracle was
created, and then how we performed the
evaluation.

1 APPLICATION: ITRUST

To evaluate the procedure, we used iTrust as our
test system. iTrust, a web-based healthcare
application originated as a class proiect for
Software Engineering at North Carolina State
University in 2004, and has been enhanced by

classes each semester through 2013. The
application follows a tvpical three-tiered
architecture with logical lavers for the
presentation, application. and persistence.

Instructors. teaching assistants, and students have
contributed to the application, which is currently
in its 15th version. Each class performs software
enhancement and maintenance on the application,
correcting defects and implementing new
functionality. The requirements consist of 40 use

Page 10 of 15
© ASE 2013

Project Learner TermlDF Category Weka Access Extraction Other Help

T | Status |C | Sentence
619 normal + 1 3229 UC29 Find LHCPs with experience with a diagnosis
620 ftitle + 20 32291 Preconditions
621 normal + 16 The iTrust user (patient) has been authenticated in the iTrust Medical Records system (UC3).
622 ftitle + 14 3.2.29.2 Main Flow.
623 normal ACF* 9 A patient has just been diagnosed with a condition and wants to find the LHCPs in the area who have handled that condition
624 normal ACF* 9 The patient chooses ‘My Diagnoses™ and is presented with a listing of all their own diagnoses, sorted by diagnosis date (more recent first).
normal 3 The patient can select a diag and will be presented with the LHCPs in the patient's living area (based upon the first three numbers of their zip code) who
626 normal = 7 The listis ranked by the gquantity of patients the LHCP has treated for that diagnosis (each patient is only counted once regardless of the number of office visits
627 normal + 7 Foreach LHCP, the following information is displayed: * Name of LHCP linked to contact information for that LHCP
r —
) == LP
H Subject | Action | Object | Permissions | Megative | LimitToSubject | Source | Correctly ” Parse Tree
A
2 L 4 s PATTERN @ 1l select [4:16,22] VB
{2 patient [2:4,11] NN nsubkj 1 nsubjpa3s 5)
{3 can [3:12,15] MD aux 1)
{4 diagnosis [6:25,34] NN dokj 1)
{5 present [10:47,56] VB conj_and 1
{6 will [8:39,43] MD aux 5)
{7 be [9:44,46] VB auxpass 5)
{& lhcp [13:66,71] NN prep with 5
(9 patient living area [19:96,100] NN prep_in &
(10 base [21:102,107] VB dep 8
e 11 first number [26:129,136] NN prep_upon 10
(Add | petete | merken Wiark | unmark | { (L3 chres [25:1£3r123] Pt R
€ i1 Am_[30:150 1541 KN £ 11

Figure 10: Access Control Relation Extraction Tool Screenshot

cases plus additional non-functional requirements,
constraints, and a glossary. The version we used
contained 1159 sentences with 409 (36.7%) of
those sentences classified as containing one or
more access control policies.

2 STUDY ORACLE

First we created our oracle in which we manually
classified each statement in the iTrust
Requirements Specification. We first converted
the document into a text-only format. The only
changes made to the resulting text file were to
account for misplaced line breaks and to remove
tables since our process cannot evaluate
information in a table-based format. (Tables
consisting primarilv of sentence-based content
were retained.) Next, we imported the document
into ACRE Tool so we can classify each sentence.
After the initial import, each sentence has been
parsed and converted into our SR. The first
authors classified the 1,159 sentences (or lines) in
seven hours.

After the initial classification was completed, we
validated the classification through several
approaches. First, we used a k-medoids clustering
algorithm to compute clusters of related sentences.
We then compared the classifications within each
cluster. Ideally. every sentence should be marked
the same. We investigated further those sentences
that did not have the same classification as other
sentences in the group. Additionally, as we
classified each sentence. we had access to the
neighbors contained within the k-NN classifier.

155

This approach allowed for more rapid manual
classification by suggesting initial classification
that we could then verify or correct as deemed
necessary. Additionally, anv discrepancies in the
predicted classification could be easily traced back
to the source sentences where the appropriate
change could be made.

Next, the first author then manually identified the
access control policies contained in the 409
sentences marked as requiring access control. Each
access control policy had all relevant elements
(subiect, action, resource, etc.) identified. This
effort took 12 hours.

3 STUDY PROCEDURE

Once the oracle has been created. we executed five
classifiers (the k-NN classifier. a TF-IDF classifier,
the “Combined SL” classifier, a multinomial naive
Baves classifier and a SVM - sequential minimal

optimization classifier) on the requirements
document. We utilized a variety of classifiers to
measure performance differences across the

different algorithms. For each classifier considered.
we tested using a stratified n-fold cross-validation
and computed the precision, recall. and
F, measure. With the n-fold cross-validation, data
is randomly partitioned into n folds based upon
each fold of approximatelv equal size and equal
response classification. For each fold. the
classifiers are trained on the remaining folds and
then the contents of the fold are used to test the
classifier. The n results are then averaged to
produce a single result. We follow Han et al.’s

Page 11 of 15
© ASE 2013

recommendation [31] and use 10 as the value for n
as this produces relatively low bias and variance.
The cross-validation ensures that all sentences are
used for training and that each sentence is tested
just once. In addition to our versions of the k-NN
classifier and TF-IDF classifier, we utilized the
multinomial naive Baves and SVM - sequential
minimal optimization classifiers within the Weka
[32] suite. We directly accessed the Weka
classifiers through the available Java APIs. As the
folds are randomlv generated, we executed the
tests 3 times and averaged the results.

In the final phase of the study, we examined
seeding the process with different sets of initial
actions (verbs). From the patterns generated, we
extracted the access control policies from the
requirements document and compared the
extracted to the manually identified policies.

VI EXPERIMENTAL RESULTS

This section presents our evaluation of the

research questions.

RQ1: How effectively can we identify access
control policies in natural language text in terms
of precision and recall?

Fig. 11 presents the results of executing each
classifier against the entire document set using a
ten-fold cross validation. We executed each test
three times and present the average.

W W —

Naive Bayes |.743 .940 .830
SMO .845 .830 .837
TF-IDF .588 .995 .739
k-NN (k=1) .851 .830 .840
Combined SL |.873 .908 .890

Figure 11 Stratified Ten-Fold Cross Validation

Creating the “Combined SL” classifier did produce
some performance gains from wusing individual
classifiers as the F; Measure was .05 higher than
the next best performer (k-NN, k=1). For the k-
NN classifier, we did experiment with wvarious
values for k and found one produced the best
performance.

156

RQ2: What common patterns exist in sentences
expressing access control policies?

By examining the most frequently occurring
patterns from our manual identification, we found
that the basic pattern displayed in Fig 5. occurred
in 25% of the sentences marked for access control.
This occurrence doesn’t require a small sentence,
but rather somewhere in the sentence we found
three nodes and two edges of that pattern.
Another frequently occurring pattern (8%) occurs
with sentences start with “The subiject
[chooses|selects] to perform action.” A wide range
of npatterns existed due to differences in
prepositions represented on edges.

RQ3: What is an appropriate set of seeded graphs
to effectively bootstrap the process to extract the
access control elements?

To evaluate this question, we started the process
with different sets of base words and then
compared the quantity of patterns generated and
the performance of those patterns to extract the
correct access control statements from the
sentence. The best performance came with the set
of 10 action verbs defined for the seed with a
precision of .463 and a recall of .536.

VII LIMITATIONS

Several limitations exist within this work. As
ACRE utilizes NLP techniques, the process and
associated tool cannot extract information
contained in images. With regards to access
control policies, our bootstrapping approach does
not take into account the presence of contextual
information or conditions that mav affect the
generated access control. The user can manually
enter such information, though. The approach also
requires that subiects and resources be identified
as nouns and actions as verbs unless the user
manually enters a policy. We also assume all
necessary information for an access control policy
is contained within the same sentence. It is
feasible for elements either to exist in surrounding
sentences. We also have not handled resolution
issues at this time. These issues occur when a
pronoun or generic term such as “syvstem” or
“data” is used in place of a descriptive term. Our
work has a significant external validity threat as
we examined only one document for one system in
a specific problem domain. While the process does

Page 12 of 15
© ASE 2013

not have any specific problem domain constraints,
additional evaluation needs to occur across
multiple domains and applications. We surmise
that the process will work for other narrative
based texts. but “task/step oriented” documents
such as test scrints and user manuals would be
less effective as the subiect is often assumed
throughout a series of steps. For such documents,
we would need to investigate the use of “action —
resource” pairs to generate patterns.

An internal validity threat may exist as the first
author performed all of the sentence classifications
and access control policies. To check the accuracy
of the first author’s classifications, we had five
software developers classify a representative
sample of 30 sentences. Utilizing Randolph’s
Online Kappa Calculator [33], we calculate a free-
marginal kappa of 0.86 (indicating significant
inter-rater agreement) by comparing the first
authors classification against the majority vote of
the other raters.

VIII FUTURE WORK

For future work, we plan to continue work on the
tool to resolve the resolution issues presented in
the previous section. We should also be able to
detect and report missing elements and other
issues directly to users. We also plan to develop a
much larger corpus of text documents for multiple
systems in two or three domains. Utilizing the
corpus, we can more effectively measure how the
process performs and would generalize to other
systems and problem domains. Other planned
work involves extracting more complicated access
control policy such as that required for privacy-
based controls or access based upon specific
contexts such as time or location. We also look to
create other derivative patterns to increase the
recall while adding checks to improve precision.

IX CONCLUSION

In this paper. we present a new process. ACRE,
and tool that assist developers in automatically
extracting access control policies from natural
language text. The tool provides a mechanism for
developers to quickly generate an initial set of
access control policies with traceability back to
the originating set. Developers can utilize the
process to detect conflicts in generated policies as
well as evaluate the coverage of generated policies

157

to the identified subjects and resources. We
demonstrated how effective a bootstrapping
process can extract policies from a very small
initial set of patterns. We also presented a
grammar that can be applied when parsing text
documents to provide additional context
information for specific elements within the
document.

As we utilized a cross-fold validation on a single
document, our combined classifier showed very
effective performance with a F 1 Measure of .89.
We also showed improved performance through
combine the results of multiple classifiers.
However, our performance in extracting access
control patterns was substantially less with a
precision of .463 and a recall of .536.

Acknowledgment

This work was supported by the U.S. Armv
Research Office (ARO) under grant W911NF-08-
1-0105 managed by NCSU Secure Open Svstems
Initiative (SOSI). We would like to thank the
North Carolina State University Realsearch group
for their helpful comments on the paper.

References
[1] J. Bedard, R. Hoitash, U. Hoitash, and K.
Westermann, “Material Weakness Remediation

and Earnings Quality: A Detailed Examination by
Type of Control Deficiency,” Auditing: A Journal
of Practice & Theory, 2012.

2] “2011 CWE/SANS Top Most
Dangerous Software Errors,” 2011. [Online].
Available: http://cwe.mitre.org/top25/. [Accessed:
14-Nov-2011].

25

(3] Verizon RISK Team, “2013 Data Breach
Investigations Report,” 2013.
[4] M. Mazzetti and M. Schmidt, “Ex-Worker

at C.I.LA. Says He Leaked Data on Surveillance,”
New York Times, New York, NY, USA, 09-Jun-

2013.
[5] P. Samarati and S. de Vimercati, “Access
control: Policies, models, and mechanisms,”

Foundations of Security Analysis and Design, pp.
137-196, 2001.

[6] “Identity & Information Assurance-
Related Policies and Issuances,” 2012. [Online].

Page 13 of 15
© ASE 2013

Available:
http://iac.dtic.mil /iatac/download/ia_ policychart
.pdf. [Accessed: 01-Oct-2012].

[7] D. Jurafsky and J. Martin, Speech and
Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics,
and Speech Recognition, Second. Pearson, 2009, p.
988.

[8] A. Meneely, B. Smith, and L. Williams,
“iTrust Electronic Health Care System: A Case
Study,” in in Software System Traceability, 2011.
g
support vector machines:

T. Joachims, “Text categorization with
Learning with many
relevant features,” Machine Learning: ECML-98,
1998.

[10] N. Chinchor and B. Sundheim, “Message
Understanding Conference - 6: A Brief History,”
of the 16th
Computational Linguistics - Volume 1, 1996, pp.
466-471.

in Proceedings conference on

[11] J. Piskorski and R. Yangarber,
“Information Extraction: Past, Present, and
Future,” in in Multi-source, Multilingual

Information Fxtraction and Summarization, T.
Poibeau, H. Saggion, J. Piskorski, and R.
Yangarber, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 23-50.

12]
based Access

Q. He and A. I. Antén, “Requirements-
Control Analysis
Specification ~ (ReCAPS),” Information and
Software Technology, vol. 51, no. 6, pp. 993—-1009,
Jun. 2009.

13]
and T. Xie, “Automated Extraction of Security

and Policy

X. Xiao, A. Paradkar, S. Thummalapenta,

Policies from Natural-Language Software
Documents,” in International Symposium on the
Foundations of Software Engineering (FSE), 2012.
[14] R. “Controlled Natural

Languages Knowledge Representation,” in

Schwitter,
for
Proceedings of the 23rd International Conference
on Computational Linguistics, 2010, pp. 1113—
1121.

[15] C. a. Brodie, C.-M. Karat, and J. Karat,
“An Empirical Study of Natural Language Parsing
of Privacy Policy Rules Using the SPARCLE

158

Policy Workbench,” Proceedings of the second
symposium on Usable privacy and security -
SOUPS 06, p. 8, 2006.

[16] P. Inglesant, M. A. Sasse, D. Chadwick,
and L. L. Shi, “Expressions of Expertness: The
Virtuous Circle of Natural Language for Access
Control Policy Specification,” in Proceedings of
the 4th symposium on Usable privacy and security,
2008, pp. 77-88.

[17] L. Shi and D. Chadwick, “A Controlled
Natural Language Interface for Authoring Access
Control Policies,” in Proceedings of the 2011
ACM Symposium on Applied Computing, 2011,
pp. 1524-1530.

[18] M. Hearst, “Automatic acquisition of
hyponyms from large text corpora,” in
Proceedings of the 14th conference on

Computational Linguistics, 1992, pp. 539-545.

[19] R. Snow, D. Jurafsky, and A. Y. Ng,
“Learning Syntactic Patterns for Automatic
Hypernym Discovery,” in Advances in Neural
Information Processing Systems 17, 2004, vol. 17,

pp. 1297-1304.

[20] A. Akbik and J. Bro, “Wanderlust:
Extracting semantic relations from natural
language text using dependency grammar

patterns,” in Workshop on Semantic Search, 2009,
vol. 491.

[21] G. Zhou, J. Su, J. Zhang, and M. Zhang,
“Exploring Various Knowledge in Relation
Extraction,” in Proceedings of the 43rd Annual
Meeting of the ACL,, 2005, no. June, pp. 427-434.
[22] K. Fundel, R. Kiiffner, and R. Zimmer,
“RelEx--relation extraction using dependency
parse trees.,” Bioinformatics (Ozxford, England),
vol. 23, no. 3, pp. 365-71, Feb. 2007.

[23] M. Mintz, S. Bills, R. Snow,
Jurafsky, “Distant supervision
extraction without labeled data,” in Proceedings
of the 47th Annual Meeting of the ACL and the
4th IJCNLP of the AFNLP, 2009, no. 2005, pp.
1003-1011.

[24] F. Wu and D. Weld, “Open information
extraction using Wikipedia,” in Proceedings of the

48th Annual Meeting of the

and D.

for relation

Association for

Page 14 of 15
© ASE 2013

Computational Linguistics, 2010, no. July, pp.
118-127.

[25] Mausam, M. Schmitz,
Soderland, and O. Etzioni, language
learning for information extraction,” EMNLP-
CoNLL of the 2012 Joint
Conference on Empirical Methods in Natural

R. Bart, S.
“Open

’12 Proceedings

Language Processing and Computational Natural
Language Learning, pp. 523-534, 2012.

[26] R. M. W. Dixon, A Semantic Approach to
English Grammar, Second. Oxford University
Press, USA, 2005, p. 543.

[27] R. Huddleston and G. Pullman, The
Cambridge Grammar of the FEnglish Language,
First. Cambridge University Press, 2002, p. 1860.

[28] M.-C. de Marneffe, B. MacCartney, and
C. Manning, “Generating Typed Dependency
Parses from Phrase Structure Parses,”
Proceedings of Language Resources and

Evaluation, pp. 449-454, 2006.

159

29]
of

Reversals,” Soviet Physics Doklady, vol. 10, no. 8,
pp. 707-710, 1966.

[30] J. Slankas and L. Williams, “Classifying
Natural Language Sentences for Policy,” 2012
IEEE International Symposium on Policies for
Distributed Systems and Networks, pp. 33-36, Jul.
2012.

[31] J. Han, M. Kamber, and J. Pei, Data
Mining: Concepts and Techniques, 3rd ed. Morgan
Kaufmann, 2011, p. 744.

[32] M. Hall, H. National, E. Frank, G.
Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA Data Mining Software : An
Update,” SIGKDD FExplorations, vol. 11, no. 1,
pp. 10-18, 2000.

[33] J. J. Randolph, “Online Kappa
Calculator,” 2008. [Online]. Available:
http://justusrandolph.net/kappa/. [Accessed: 02-
Apr-2013].

V. I. Levenshtein, “Binary Codes Capable

Correcting Deletions, Insertions, and

Page 15 of 15
© ASE 2013

