
Classifying Natural Language Sentences for Policy
John Slankas and Laurie Williams

Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA

[john.slankas,laurie_williams]@ncsu.edu

Abstract—Organizations derive policies from a wide variety of
sources, such business plans, laws, regulations, and contracts.
However, an efficient process does not yet exist for quickly
finding or automatically deriving policies from uncontrolled
natural language sources. The goal of our research is to assure
compliance with established policies by ensuring policies in existing
natural language texts are discovered, appropriately represented,
and implemented. We propose a tool-based process to parse
natural language documents, learn which statements signify
policy, and then generate appropriate policy representations. To
evaluate the initial work on our process, we analyze four data use
agreements for a particular project and classify sentences as to
whether or not they pertain to policy, requirements, or neither.
Our k-nearest neighbor classifier with a unique distance metric
had a precision of 0.82 and a recall of 0.81, outperforming
weighted random guess, which had a precision of 0.44 and a
recall of 0.46. The initial results demonstrate the feasibility of
classifying sentences for policy and we plan to continue this work
to derive policy elements from the natural language text.

Keywords-policy; natural language processing; machine
learning; classification; data use agreements

I. INTRODUCTION
Organizations derive policies from a wide variety of

sources, such as business plans, laws, regulations, and
contracts. As an extreme example, the United States
Department of Defense has over 180 different policy
documents and sources for its Trusted Global Information Grid
[1]. While other organizations are not so overwhelmed with
sources, they still must contend with manually processing
documents to ensure their operations and systems are in
compliance with all defined policies. To solve this issue,
organizations need to implement a holistic approach to
managing policy. Such an approach requires policy extraction
from existing documents, an appropriate digital representation,
and assurance the operating environment correctly implements
policies.

The goal of our research is to assure compliance with
established policies by ensuring policies in existing natural
language texts are discovered, appropriately represented, and
implemented.

To meet this goal, we propose a tool-based process, Natural
Language Parsing for Policy (NLP4P), to allow organizations
to utilize existing, uncontrolled natural language text to
discover policies and represent those policies digitally. NLP4P
will analyze documents to discover sentences and passages
establishing a policy, extract out relevant policy elements, and
then represent the policy in a digital format. For our initial

work, we first need to determine which sentences establish
policies and whether or not those policies can be enacted within
a computer system. To evaluate this work we analyze four data
use agreements (DUA).

A DUA is a legal contract among two or more parties that
specifies what data is shared, who can access the data
(authorizations), and for what purpose the data may be used
(purposes). The contract may specify obligations, activities
one party must perform (i.e., data must be encrypted), and
constraints, activities one party must not perform (i.e., users
shall not contact individuals identified in the data set). These
authorizations, purposes, obligations, and constraints are a
basis for policies for organizations. Additionally, DUAs may
specify certain system requirements. Given the possibility to
generate both policy and requirements from DUAs, we choose
to classify sentences into one of five categories: policy, digital
policy, functional requirement, non-functional requirement, and
not applicable. For the purposes of this paper, we term policy
to be statements that govern behavior within an organization
and digital policy as policy that can be implemented within a
computer system. We term functional requirements as specific
functionality to be implemented by a system and non-
functional requirements as characteristics of the system.

II. RELATED WORK

A. Controlled Natural Language
Other researchers have resolved converting natural

language to and from machine policies by utilizing a controlled
natural language (CNL). Schwitter [2] defines CNLs as
“engineered subsets of natural languages whose grammar and
vocabulary have been restricted in a systematic way in order to
reduce both ambiguity and complexity of full natural
languages.” While CNLs provide consistent, semantic
interpretations, CNLs limit authors and typically require
language specific tools to stay within the constraints of the
language. Project documents previously created cannot be used
as inputs without processing the documents manually into the
tools. Policy authored outside of tools must confirm to strict,
limited grammars to be automatically parsed. Brodie et al. [3]
used this approach in the SPARCLE Policy Workbench. Using
their own natural language parser and a controlled grammar,
they were effectively able to translate from natural language
into formal policy. Users also responded favorably to their
policy authoring tool. Recently, Shi and Chadwick [4] showed
the improved usability of their CNL interface, but users were
limited in the complexity of the policies that could be created
as the interface did not support complex policies.

U.S. Army Research O�ce (ARO) under grant W911NF-08-1-0105

2012 IEEE International Symposium on Policies for Distributed Systems and Networks

978-0-7695-4735-0/12 $26.00 © 2012 IEEE

DOI 10.1109/POLICY.2012.16

33

2012 IEEE International Symposium on Policies for Distributed Systems and Networks

978-0-7695-4735-0/12 $26.00 © 2012 IEEE

DOI 10.1109/POLICY.2012.16

33

B. Data Use Agreements
Researchers have examined DUAs from several

perspectives. Schmidt et al. [5] utilized a manual method to
extract requirements from DUAs by analyzing the documents
for commitments, privileges, and rights.1 From their work,
they identified contractual compliance requirements as well as
identified issues associated with the current system in relation
to the DUAs. Matteucci et al. [6] presented their approach for
developing DUAs with a controlled natural language for
agreements and a tool to support authoring of such agreements.
They demonstrated the ability of the tool to author agreements
and to detect potential policy conflicts.

III. NATURAL LANGUAGE PARSING FOR POLICY
We now present our proposed process, Natural Language

Parsing for Policy (NLP4P), to classify sentences and then to
extract elements from policy statements such that they can be
digitally represented. To guide users through the process, we
developed a tool to perform many of the tasks automatically
and allow the user to make corrections when items were
incorrectly classified.

A. Overview
For input, the process takes any natural language document

that may serve as a source for policies and requirements. The
process then follows four steps to classify sentences and
represent applicable policies within a policy ontology.

1) Parse natural language into intermediate representation
2) Classify Sentences
3) Perform reference resolution
4) Convert intermediate representation to an ontology

Using an ontology as the knowledge representation
provides a flexible format to manage policies in which we can
detect conflicts and inconsistences.

B. Step 1: Parse Natural Language
The process begins by entering the text into the system,

parsing the text and converting the parsed representation into
NLP4P’s intermediate representation (IR). The IR represents
each sentence as directed graph where the vertices are words
and the edges are the relationships between words.

The tool parses text with the Stanford Natural Language
Parser and, for each sentence, outputs a graph in the Stanford
Type Dependency Representation (STDR) [7]. We choose the
STDR as it incorporates the sentence’s structural information in
a concise and usable format and can be readily converted to a
Resource Description Framework (RDF) representation, which
aids the conversion later to an ontology.

From the STDR generated by the parser, we create our IR
as NLP4P needs to track additional attributes for the sentence
and for each word. Fig. 1 shows the STDR for the sentence
“A student may search and register for classes.” Although, in
general the IR can be considered a tree, situations exist

1 They define “a commitment is an action that Party A pledges to Party B. A
privilege is an action that Party A is entitled to perform that does not imply a
commitment from any other party. A right is an action that Party A is entitled
to perform that also implies a commitment from Party B to Party A.”

(primarily due to conjunctions) in which a vertex has multiple
parents. Vertexes correspond to words in the sentence and
contain the word, the word’s lemma and collapsed part of
speech. Edges correspond to the relationship between two
words (unchanged from Stanford’s representation). Utilizing a
pre-order traversal, the process creates the IR from the
Stanford graph. As each vertex is created, we make two
changes to the nodes. First, to avoid multiple versions of the
same word, we use the lemma of the original word. Second,
to avoid differences in the part of speech, we collapse the parts
of speeches for all nouns, verbs, and adjectives to their base
category. For example, we treat all plural nouns and proper
nouns as just nouns. Similarly, verbs with different tenses are
treated collectively as a single group.

Figure 1. Stanford Collapsed Type Dependency Graph

C. Step 3: Classify Sentences
Once the tool completes the parsing and initial analysis of

a sentence, a � -NN classification algorithm classifies each
sentence into one of five categories: policy, digital policy,
functional requirement, non-functional requirement, or not
applicable. This classification is paramount to our process as
the classification of “policy” or “digital policy” indicates the
process will perform additional work to convert the sentence
into a policy-based ontology. Sentences classified besides
“not applicable” will appear on generated reports from the tool
for use outside of the system.

A � -NN classifier predicts a classification by taking a
majority vote of the existing classifications of the � nearest
neighbors to the item under test. Thus, in our situation, to
classify a sentence into one of the five categories, the classifier
needs to find which sentences already classified are most
similar to that sentence. �-NN classifiers use a distance metric
to find the closest neighbors. This metric is the sum of the
differences among the attributes used to determine the
classification. Typically, Euclidean distance serves as a metric
for numerical attributes while for nominal values, the distance
is generally considered to be zero if both attribute values are
the same or one if they differ. Our situation is more complex
as we have a variable number of attributes to consider for each
sentence based upon the sentence length. Additionally, certain
words may be more closely related to one another than other
words. As such, we need to utilize a custom distance metric to
compute a value representing the difference between two
sentences.

3434

Our distance metric is a modified version of the
Levenshtein distance [9]. Rather than using the resulting
number of edits to transform one string into another as the
value as the Levenshtein distance does, our metric computes
the number of word transformations to change one sentence
into another. Rather than strictly using just zero or one as the
difference between words, the metric uses the function defined
in Fig. 2. The function first checks the structure of graph
around each vertex to ensure it corresponds to other vertex.
Next, the functions checks to see if the two vertices are the
same (lemmas are equal). Then in line 7, the process checks
to see if the two words are related through sets of cognitive
synonyms (synsets) within WordNet 2 via semantic
relationships (hypernym or hyponym). If a relationship value
is found, then a value between 0.1 and 0.4 is returned based
upon the number of relationships traversed. Finally, a default
value of 0.6 is returned if none of the other conditions are met.
In this situation, the vertices have an equivalent structure and
part of speech and should be scored as closer together than
two vertices differing in those attributes.

Once the classification is complete, the user may review
the classification and provide correction as necessary through
the tool.

computeVertexDistance(Vertex a, Vertex b)
 1: if a = NULL or b = NULL return 1
 2: if a.partOfSpeech <> b.partOfSpeech return 1
 3: if a.parentCount <> b.parentCount return 1
 4: for each parent in a.parents
 5: if not b.parents.contains(parent) return 1
 6: if a.lemma = b.lemma return 0
 7: wnValue = wordNetSynonyms(a.lemma,b.lemma)
 8: if wnValue > 0 return wnValue
12: return 0.6

Figure 2. Compute Vertex Distance Logic

D. Step 4: Perform Reference Resolution (future work)
Once a sentence has been classified as policy, we need to

ensure the various elements required by the policy are present
and, if not, to infer those properties from elsewhere in the text.
For example, access control policies require at least a subject,
an action, and a resource defined. It is feasible for one
sentence to specify the action and resource, but the subject
identified in another sentence. In work to be performed, the
tool will be enhanced to classify the type of policy for the
sentence, extract relevant attributes present, and then to
resolve any missing policy elements.

E. Step 5: Convert Intermediate Representation to an
Ontology (future work)
We will also modify the tool to convert the IR into an

ontology. Once in this format, we can apply reasoning to
check for conflicts and then convert to other formats such as
eXtensible Access Control Markup Language (XACML) for
deployment into the environment.

IV. EVALUATION
To evaluate our process, we used four DUAs from a real
system currently under development3. Text files were created

2 http://wordnet.princeton.edu/
3 The system owners preclude us from sharing more details.

from the Microsoft Word or Adobe PDF files and then
imported directly into the tool without further changes. The
first author executed the tool against the four files, checked the
appropriate classification against his knowledge of the system,
and applied corrections as necessary to ensure all sentences
were correctly classified. The 336 sentences in the four files
were classified as follows:

• 89 were policy statements, such as "Recipient shall
not sell, rent or commercialize data in any manner to
any person or entity.

• 3 were digital policy statements, such as “Access to
the data will be restricted to persons expressly named
and authorized by this Data Use Agreement.”

• 29 were functional requirements, such as
"Prospectively use this tool to identify unexpected
increases in adverse outcomes in time and space."

• 8 were non-functional requirements, such as “Data
will be encrypted at rest and in transit to the system.”

• 207 were not applicable, such as “The data providers
have made a substantial and long-term contribution in
establishing and maintaining a database of high
quality.”

To compare the results, we used recall, precision, F1
measure, and accuracy. To compute these values, we first need
to categorize the classifier’s predictions into three categories
for each classification value. True positives (TP) are correct
predictions. False positives (FP) are predictions in which the
sentence of another classification is classified as the one under
evaluation. False negatives (FN) are predictions in which a
sentence of the same classification under evaluation is placed
into another classification. From these values, we define
precision (P) as the proportion of corrected predicted
classifications against all predictions against the classification
under test:�� � ����	��
 ��� . We define recall as the
proportion of classifications found for the current classification
under test: R = TP/(TP+FN). The �
measure is the harmonic
mean of precision and recall, giving an equal weight to both
elements: �
 � � �

���

���
. For precision, recall, and the

�
measure we present a weighted average of these results.
Accuracy is the proportion of correct classifications against all
classifications. From a policy perspective, high values for both
precision and recall are desired. Lower precision implies that
the process will incorrectly mark sentences and require more
human intervention to resolve. Lower recall implies that the
classifier has missed policy and requirement statements from
the source document.

Our first evaluation of the classifier used a stratified n-fold
cross-validation in which data is randomly partitioned into n
folds based upon each fold of approximately equal size and
equal response classification. For each fold, the models are
trained on the remaining folds and then the contents of the fold
are used to test the model. The n results are then averaged to
produce a single result. We follow Han et al.’s
recommendation [10] and use 10 as the value for n as this
produces relatively low bias and variance. The cross-validation
ensures that all sentences are used for training and each
sentence is tested just once.

3535

To compare our classifier against other machine learning
classifiers, we used several different options from WEKA [11]
along with a weighted random model. To generate input data
for the WEKA models, we flattened the IR graph into a comma
separated list using a depth-first traversal and then executed a
WEKA filter to convert all string values to nominal values.
Our classifier significantly outperformed the other models as
demonstrated in Table 1.

Additionally, we evaluated the classifier with three of the
DUAs forming the training data set and the remaining DUA
serving as test data set. The test was repeated such that each
document served as the test data set once. The average
accuracy result of 0.780 is just slightly less than the accuracy
for the 10-fold validation. This decrease is explained by less
sentences being available within the classifier and, hence,
sentences are not matched to similar sentences as accurately.

TABLE I. TEST RESULTS OF STRATIFIED 10-FOLD CROSS VALIDATION

Model Precision Recall F1 Measure Accuracy

Weighted Random 0.444 0.458 0.451 0.458

Naïve Bayes 0.717 0.720 0.681 0.720

BFTree 0.725 0.729 0.713 0.729

Ridor 0.602 0.643 0.619 0.643

IB1 0.709 0.705 0.707 0.705

NLP4P k-NN (k=1) 0.819 0.810 0.812 0.809

Next, we examined whether it was appropriate for the
classifier to even return a value. Sentences do exist without
any close neighbors in the classifier, and the resulting
classification amounts to a weighted random guess. To
determine whether or not classification results should be
utilized, we computed a threshold value as a ratio of the
calculated distance to the neighbors compared to the number of
vertices in the sentence. So if the computed distance to its
neighbors was 7.0 and the sentence had 10 vertices, we would
only accept the classifier’s answer if the threshold was set at
0.70 or higher. As can be seen in Table II, low threshold values
(T) resulted in significantly higher values for the F1 measure
and accuracy with the disadvantage that a substantial number
of sentences were not automatically classified.

TABLE II. THRESHOLD RESPONSE RESULTS

T
Stratified 10-Fold Document Fold

%
Answered

F1
Measure Accuracy %

Answered
F1

Measure Accuracy

0.6 43% 1.000 1.000 40% 1.000 1.000

0.7 49% 0.969 0.970 43% 1.000 1.000

0.8 78% 0.867 0.863 72% 0.866 0.863

0.9 99% 0.813 0.800 99% 0.782 0.778

1.0 100% 0.812 0.809 100% 0.784 0.780

V. CONCLUDING REMARKS
In evaluating the process and the tool, we only examined

four DUAs for a specific system. Our results most likely are
higher than if the DUAs came from different systems or
projects. While the four DUAs are different, evidence exists
where one of the DUAs has been used a starting point for
another. Additionally, two of the DUAs could also be traced
back to a template available on the internet.

We plan to complete the NLP4P process in that the process
can generate digital policy representations in a policy-based
ontology. The process will be enhanced to perform more
analysis of the IR to detect conditions and other patterns. We
will continue to explore other documents types as policy
sources. Our process and its associated tool that will guide
policy writers and requirements analysts in extracting policy
and requirement statements from existing natural language
documents. Preliminary results from examining DUAs show
classification into policies and requirements is feasible.

REFERENCES

[1] “Identity & Information Assurance- Related Policies and Issuances,”
2012. [Online]. http://iac.dtic.mil/iatac/download/ia_policychart.pdf.
[Accessed: 01-Oct-2012].

[2] R. Schwitter, “Controlled Natural Languages for Knowledge
Representation,” in Proceedings of the 23rd International Conference on
Computational Linguistics, 2010, pp. 1113–1121.

[3] C. a. Brodie, C.-M. Karat, and J. Karat, “An Empirical Study of Natural
Language Parsing of Privacy Policy Rules Using the SPARCLE Policy
Workbench,” Proceedings of the second symposium on Usable privacy
and security - SOUPS ’06, p. 8, 2006.

[4] L. Shi and D. Chadwick, “A Controlled Natural Language Interface for
Authoring Access Control Policies,” in Proceedings of the 2011 ACM
Symposium on Applied Computing, 2011, pp. 1524-1530.

[5] J. Y. Schmidt, A. I. Antón, L. Williams, and P. N. Otto, “The Role of
Data Use Agreements in Specifying Legally Compliant Software
Requirements,” in Fourth International Workshop on Requirements
Engineering and Law, 2011, no. Relaw, pp. 15-18.

[6] I. Matteucci, M. Petrocchi, M. L. Sbodio, and L. Wiegand, “A Design
Phase for Data Sharing Agreements,” in 6th DPM International
Workshop on Data Privacy Management, 2011.

[7] M.-C. de Marneffe, B. MacCartney, and C. Manning, “Generating
Typed Dependency Parses from Phrase Structure Parses,” Proceedings
of Language Resources and Evaluation, pp. 449–454, 2006.

[8] R. M. W. Dixon, A Semantic Approach to English Grammar, Second.
Oxford University Press, USA, 2005, p. 543.

[9] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions, and Reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp.
707–710, 1966.

[10] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
3rd ed. Morgan Kaufmann, 2011, p. 744.

[11] M. Hall et al., “The WEKA Data Mining Software : An Update,”
SIGKDD Explorations, vol. 11, no. 1, pp. 10-18, 2009.

3636

